Skip to main content

Analysis of Rice Proteins Using SDS-PAGE Shotgun Proteomics

  • Protocol
  • First Online:
Book cover Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1072))

Abstract

In this chapter we describe the workflow used in our laboratory to analyze rice leaf samples using label-free shotgun proteomics based on SDS-PAGE fractionation of proteins. Rice proteomics has benefitted substantially from successful execution of shotgun proteomics techniques. We describe steps on how to proceed starting from rice protein extraction, SDS-PAGE, in-gel protein digestion with trypsin, nanoLC-MS/MS, and database searching using the GPM. Data from these experiments can be used for spectral counting, where simultaneous quantitation of several thousand proteins can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-DE:

Two-dimensional electrophoresis

ACN:

Acetonitrile

BCA:

Bicinchoninic acid

BSA:

Bovine serum albumin

DTT:

Dithiothreitol

FDR:

False discovery rate

GO:

Gene ontology

GPM:

Global proteome machine

IAA:

Iodoacetamide

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MudPIT:

Multidimensional protein identification technology

NSAF:

Normalized spectral abundance factor

RP:

Reversed phase

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TCA:

Trichloroacetic acid

WEGO:

Web gene ontology annotation plot

References

  1. Weinberger KM, Easdown WJ, Yang R et al (2009) Food crisis in the Asia-Pacific region. Asia Pac J Clin Nutr 18:507–515

    PubMed  Google Scholar 

  2. Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  3. Rabbani MA, Maruyama K, Abe H et al (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed  CAS  Google Scholar 

  4. Koller A, Washburn MP, Lange B et al (2002) Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci U S A 99: 11969–11974

    Article  PubMed  CAS  Google Scholar 

  5. Link AJ, Eng J, Schieltz DM et al (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    Article  PubMed  CAS  Google Scholar 

  6. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  7. Wolters DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    Article  PubMed  CAS  Google Scholar 

  8. Helmy M, Tomita M, Ishihama Y (2011) OryzaPG-DB: rice proteome database based on shotgun proteogenomics. BMC Plant Biol 11:63

    Article  PubMed  CAS  Google Scholar 

  9. Liu L, Bai L, Luo C et al (2011) Systematic annotation and bioinformatics analyses of large-scale Oryza sativa proteome. Curr Protein Pept Sci 12:621–630

    Article  PubMed  CAS  Google Scholar 

  10. Nakagami H, Sugiyama N, Mochida K et al (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153:1161–1174

    Article  PubMed  CAS  Google Scholar 

  11. Ong SE, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29:124–130

    Article  PubMed  CAS  Google Scholar 

  12. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  PubMed  CAS  Google Scholar 

  13. Steen H, Pandey A (2002) Proteomics goes quantitative: measuring protein abundance. Trends Biotechnol 20:361–364

    Article  PubMed  CAS  Google Scholar 

  14. Agrawal GK, Rakwal R (2011) Rice proteomics: a move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics 11:1630–1649

    Article  PubMed  CAS  Google Scholar 

  15. Gammulla CG, Pascovici D, Atwell BJ et al (2010) Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress. Proteomics 10:3001–3019

    Article  PubMed  CAS  Google Scholar 

  16. Gammulla CG, Pascovici D, Atwell BJ et al (2011) Differential proteomic response of rice (Oryza sativa) leaves exposed to high- and low-temperature stress. Proteomics 11:2839–2850

    Article  PubMed  CAS  Google Scholar 

  17. Mirzaei M, Pascovici D, Atwell BJ et al (2012) Differential regulation of aquaporins, small GTPases and V-ATPases proteins in rice leaves subjected to drought stress and recovery. Proteomics 12:864–877

    Article  PubMed  CAS  Google Scholar 

  18. Mirzaei M, Soltani N, Sarhadi E et al (2012) Shotgun proteomic analysis of long-distance drought signaling in rice roots. J Proteome Res 11:348–358

    Article  PubMed  CAS  Google Scholar 

  19. Hamamoto K, Aki T, Shigyo M et al (2012) Proteomic characterization of the greening process in rice seedlings using the MS spectral intensity-based label free method. J Proteome Res 11:331–347

    Article  PubMed  CAS  Google Scholar 

  20. He D, Han C, Yao J et al (2011) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11:2693–2713

    Article  PubMed  CAS  Google Scholar 

  21. Lee J, Jiang W, Qiao Y et al (2011) Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice. Proteomics 11:455–468

    Article  PubMed  CAS  Google Scholar 

  22. Schirle M, Heurtier MA, Kuster B (2003) Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 2:1297–1305

    Article  PubMed  CAS  Google Scholar 

  23. Simpson RJ, Connolly LM, Eddes JS et al (2000) Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database. Electrophoresis 21:1707–1732

    Article  PubMed  CAS  Google Scholar 

  24. Pascovici D, Keighley T, Mirzaei M et al (2012) PloGO: plotting gene ontology annotation and abundance in multi-condition proteomics experiments. Proteomics 12:406–410

    Article  PubMed  CAS  Google Scholar 

  25. Shevchenko A, Wilm M, Vorm O et al (1996) A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochem Soc Trans 24:893–896

    PubMed  CAS  Google Scholar 

  26. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467

    Article  PubMed  CAS  Google Scholar 

  27. Neilson KA, Keighley T, Pascovici D et al (Submitted May 2012) Label-free quantitative shotgun proteomics using normalized spectral abundance factors. Meth Mol Biol

    Google Scholar 

  28. Neilson KA, Ali NA, Muralidharan S et al (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    Article  PubMed  CAS  Google Scholar 

  29. Zybailov B, Mosley AL, Sardiu ME et al (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res 5:2339–2347

    Article  PubMed  CAS  Google Scholar 

  30. Colaert N, Vandekerckhove J, Gevaert K et al (2011) A comparison of MS2-based label-free quantitative proteomic techniques with regards to accuracy and precision. Proteomics 11:1110–1113

    Article  PubMed  CAS  Google Scholar 

  31. Gokce E, Shuford CM, Franck WL et al (2011) Evaluation of normalization methods on GeLC-MS/MS label-free spectral counting data to correct for variation during proteomic workflows. J Am Soc Mass Spectrom 22:2199–2208

    Article  PubMed  CAS  Google Scholar 

  32. Pavelka N, Fournier ML, Swanson SK et al (2008) Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol Cell Proteomics 7:631–644

    PubMed  CAS  Google Scholar 

  33. Neilson KA, Mariani M, Haynes PA (2011) Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics 11:1696–1706

    Article  PubMed  Google Scholar 

  34. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  35. Ye J, Fang L, Zheng H et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

KAN, ISG, and SM acknowledge support in the form of iMQRES awards. SJE acknowledges support in the form of an APA scholarship. PAH acknowledges funding support from the Australian Research Council and wishes to thank Gayani Gammulla for providing images.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Neilson, K.A., George, I.S., Emery, S.J., Muralidharan, S., Mirzaei, M., Haynes, P.A. (2014). Analysis of Rice Proteins Using SDS-PAGE Shotgun Proteomics. In: Jorrin-Novo, J., Komatsu, S., Weckwerth, W., Wienkoop, S. (eds) Plant Proteomics. Methods in Molecular Biology, vol 1072. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-631-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-631-3_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-630-6

  • Online ISBN: 978-1-62703-631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics