Skip to main content

Construction of Synthetic Gene Circuits in the Escherichia coli Genome

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1073))

Abstract

The construction of stable and functional synthetic circuits in bacteria is necessary in the areas of systems and synthetic biology. The common approach using plasmids to carry foreign genetic circuits offers convenience in genetic construction but is poor in genetic stability (e.g., variation in copy number). Genome recombination provides the stable genetic maintenance of synthetic circuits, but is often labor intensive and time consuming when the genetic circuits are complex and the DNA fragments become larger. The method introduced here is modified from that reported by Wanner’s group and is available for integration of complex genetic circuits into the Escherichia coli chromosome.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  Google Scholar 

  2. Kashiwagi A, Urabe I, Kaneko K, Yomo T (2006) Adaptive response of a gene network to environmental changes by fitness-induced attractor selection. PLoS One 1:e49

    Article  Google Scholar 

  3. Ying BW, Ito Y, Shimizu Y, Yomo T (2010) Refined method for the genomic integration of complex synthetic circuits. J Biosci Bioeng 110:529–536

    Article  CAS  Google Scholar 

  4. Dabert P, Smith GR (1997) Gene replacement with linear DNA fragments in wild-type Escherichia coli: enhancement by Chi sites. Genetics 145:877–889

    CAS  Google Scholar 

  5. Kato C, Ohmiya R, Mizuno T (1998) A rapid method for disrupting genes in the Escherichia coli genome. Biosci Biotechnol Biochem 62:1826–1829

    Article  CAS  Google Scholar 

  6. Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228–6237

    CAS  Google Scholar 

  7. Posfai G, Kolisnychenko V, Bereczki Z, Blattner FR (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27:4409–4415

    Article  CAS  Google Scholar 

  8. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  Google Scholar 

  9. Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  Google Scholar 

  10. Kang Y, Durfee T, Glasner JD et al (2004) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930

    Article  CAS  Google Scholar 

  11. Serra-Moreno R, Acosta S, Hernalsteens JP et al (2006) Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol 7:31

    Article  Google Scholar 

  12. Haseltine EL, Arnold FH (2007) Synthetic gene circuits: design with directed evolution. Annu Rev Biophys Biomol Struct 36:1–19

    Article  CAS  Google Scholar 

  13. Shimizu Y, Tsuru S, Ito Y et al (2011) Stochastic switching induced adaptation in a starved Escherichia coli population. PLoS One 6:e23953

    Article  CAS  Google Scholar 

  14. Matsumoto Y, Ito Y, Tsuru S et al (2011) Bacterial cells carrying synthetic dual-function operon survived starvation. J Biomed Biotechnol 2011:e489265

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grants-in-Aid for Challenging Exploratory Research 22657059 (to B.W.Y.) and the “Global COE (Centers of Excellence) program” of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Ying, BW., Akeno, Y., Yomo, T. (2013). Construction of Synthetic Gene Circuits in the Escherichia coli Genome. In: Polizzi, K., Kontoravdi, C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1073. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-625-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-625-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-624-5

  • Online ISBN: 978-1-62703-625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics