Skip to main content

Live-Cell Imaging of Cytosolic NADH–NAD+ Redox State Using a Genetically Encoded Fluorescent Biosensor

  • Protocol
  • First Online:
Fluorescent Protein-Based Biosensors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1071))

Abstract

NADH is an essential redox cofactor in numerous metabolic reactions, and the cytosolic NADH–NAD+ redox state is a key parameter in glycolysis. Conventional NADH measurements rely on chemical determination or autofluorescence imaging, which cannot assess NADH specifically in the cytosol of individual live cells. By combining a bacterial NADH-binding protein and a fluorescent protein variant, we have created a genetically encoded fluorescent biosensor of the cytosolic NADH–NAD+ redox state, named Peredox (Hung et al., Cell Metab 14:545–554, 2011). Here, we elaborate on imaging methods and technical considerations of using Peredox to measure cytosolic NADH:NAD+ ratios in individual live cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholls DG, Ferguson SJ (2002) Bioenergetics, 3rd edn. Academic, London

    Google Scholar 

  2. Avi-Dor Y, Olson JM, Doherty MD, Kaplan NO (1962) Fluorescence of pyridine nucleotides in mitochondria. J Biol Chem 237:2377–2383

    CAS  Google Scholar 

  3. Rocheleau JV, Head WS, Piston DW (2004) Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem 279:31780–31787

    Article  PubMed  CAS  Google Scholar 

  4. Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH–NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554

    Article  PubMed  CAS  Google Scholar 

  5. Zapata-Hommer O, Griesbeck O (2003) Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol 3:5

    Article  PubMed  Google Scholar 

  6. Sickmier EA, Brekasis D, Paranawithana S, Bonanno JB, Paget MSB, Burley SK, Kielkopf CL (2005) X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing. Structure 13:43–54

    Article  PubMed  CAS  Google Scholar 

  7. Wang E, Bauer MC, Rogstam A, Linse S, Logan DT, von Wachenfeldt C (2008) Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. Mol Microbiol 69:466–478

    Article  PubMed  CAS  Google Scholar 

  8. McLaughlin KJ, Strain-Damerell CM, Xie K, Brekasis D, Soares AS, Paget MSB, Kielkopf CL (2010) Structural basis for NADH/NAD+ redox sensing by a Rex family repressor. Mol Cell 38:563–575

    Article  PubMed  CAS  Google Scholar 

  9. Berg J, Hung YP, Yellen G (2009) A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat Methods 6:161–166

    Article  PubMed  CAS  Google Scholar 

  10. Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–2841

    Article  PubMed  CAS  Google Scholar 

  11. Tantama M, Hung YP, Yellen G (2012) Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain. Prog Brain Res 196:235–263

    Article  PubMed  CAS  Google Scholar 

  12. Bücher T, Brauser B, Conze A, Klein F, Langguth O, Sies H (1972) State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate-pyruvate in hemoglobin-free perfused rat liver. Eur J Biochem 27:301–317

    Article  PubMed  Google Scholar 

  13. Tantama M, Hung YP, Yellen G (2011) Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc 133:10034–10037

    Article  PubMed  CAS  Google Scholar 

  14. Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268

    Article  PubMed  CAS  Google Scholar 

  15. Katayama H, Yamamoto A, Mizushima N, Yoshimori T, Miyawaki A (2008) GFP-like proteins stably accumulate in lysosomes. Cell Struct Funct 33:1–12

    Article  PubMed  CAS  Google Scholar 

  16. Passonneau JV, Lowry OH (1993) Enzymatic analysis: a practical guide. Humana, Totowa

    Book  Google Scholar 

  17. Schulz I (1990) Permeabilizing cells: some methods and applications for the study of intracellular processes. Methods Enzymol 192:280–300

    Article  PubMed  CAS  Google Scholar 

  18. Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527

    PubMed  CAS  Google Scholar 

  19. Zhao Y, Jin J, Hu Q, Zhou H-M, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14:555–566

    Article  PubMed  CAS  Google Scholar 

  20. Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, Gao S, Puigserver P, Brugge JS (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461:109–113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mathew Tantama for careful reading of this manuscript. This work was supported by the Albert J. Ryan fellowship, the Stuart H.Q. and Victoria Quan predoctoral fellowship in neurobiology (both to Y.P.H.), and the U.S. National Institutes of Health (R01 NS055031 to G.Y.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hung, Y.P., Yellen, G. (2014). Live-Cell Imaging of Cytosolic NADH–NAD+ Redox State Using a Genetically Encoded Fluorescent Biosensor. In: Zhang, J., Ni, Q., Newman, R. (eds) Fluorescent Protein-Based Biosensors. Methods in Molecular Biology, vol 1071. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-622-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-622-1_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-621-4

  • Online ISBN: 978-1-62703-622-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics