Skip to main content

Genetic Manipulation to Analyze Pheromone Responses: Knockouts of Multiple Receptor Genes

  • Protocol
  • First Online:
Pheromone Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1068))

Abstract

Gene targeting in the mouse is an essential technique to study gene function in vivo. Multigene families encoding vomeronasal receptor (VR) type 1 and type 2 consist of ~300 intact genes, which are clustered at multiple loci in the mouse genome. To understand the function of VRs and neurons expressing a particular VR in vivo, individual endogenous receptor genes can be manipulated by conventional gene targeting to create loss-of-function mutations or to visualize neurons and their axons expressing the VR. Multiple receptor genes in a cluster can also be deleted simultaneously by chromosome engineering, allowing analysis of function of a particular VR subfamily. Here, we describe protocols for conventional gene targeting and chromosome engineering for deleting a large genomic region in mouse embryonic stem (ES) cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  2. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  3. Vasquez KM, Marburger K, Intody Z et al (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci USA 98:8403–8410

    Article  PubMed  CAS  Google Scholar 

  4. Zhang H, Hasty P, Bradley A (1994) Targeting frequency for deletion vectors in embryonic stem cells. Mol Cell Biol 14:2404–2410

    Article  PubMed  CAS  Google Scholar 

  5. Ramirez-Solis R, Liu P, Bradley A (1995) Chromosome engineering in mice. Nature 378:720–724

    Article  PubMed  CAS  Google Scholar 

  6. Yu Y, Bradley A (2001) Engineering chromosomal rearrangements in mice. Nat Rev Genet 2:780–790

    Article  PubMed  CAS  Google Scholar 

  7. Belluscio L, Koentges G, Axel R et al (1999) A map of pheromone receptor activation in the mammalian brain. Cell 97:209–220

    Article  PubMed  CAS  Google Scholar 

  8. Rodriguez I, Feinstein P, Mombaerts P (1999) Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97:199–208

    Article  PubMed  CAS  Google Scholar 

  9. Del Punta K, Leinders-Zufall T, Rodriguez I et al (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–74

    Article  PubMed  Google Scholar 

  10. Del Punta K, Puche A, Adams NC et al (2002) A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron 35:1057–1066

    Article  PubMed  Google Scholar 

  11. Ishii T, Mombaerts P (2008) Expression of nonclassical class I major histocompatibility genes defines a tripartite organization of the mouse vomeronasal system. J Neurosci 28:2332–2341

    Article  PubMed  CAS  Google Scholar 

  12. Haga S, Hattori T, Sato T et al (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466:118–122

    Article  PubMed  CAS  Google Scholar 

  13. Leinders-Zufall T, Ishii T, Mombaerts P et al (2009) Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat Neurosci 12:1551–1558

    Article  PubMed  CAS  Google Scholar 

  14. Ishii T, Mombaerts P (2011) Coordinated coexpression of two vomeronasal receptor V2R genes per neuron in the mouse. Mol Cell Neurosci 46:397–408

    Article  PubMed  CAS  Google Scholar 

  15. Ringwald M, Iyer V, Mason JC et al (2011) The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucleic Acids Res 39:D849–D855

    Article  PubMed  CAS  Google Scholar 

  16. Skarnes WC, Rosen B, West AP et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342

    Article  PubMed  CAS  Google Scholar 

  17. Guan C, Ye C, Yang X et al (2010) A review of current large-scale mouse knockout efforts. Genesis 48:73–85

    PubMed  CAS  Google Scholar 

  18. Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  19. Adams DJ, Quail MA, Cox T et al (2005) A genome-wide, end-sequenced 129Sv BAC library resource targeting vector construction. Genomics 86:753–758

    Article  PubMed  CAS  Google Scholar 

  20. Mombaerts P, Wang F, Dulac C et al (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    Article  PubMed  CAS  Google Scholar 

  21. Bunting M, Bernstein KE, Greer JM et al (1999) Targeting genes for self-excision in the germ line. Genes Dev 13:1524–1528

    Article  PubMed  CAS  Google Scholar 

  22. Bozza T, Feinstein P, Zheng C et al (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22:3033–3043

    PubMed  CAS  Google Scholar 

  23. Adams DJ, Biggs PJ, Cox T et al (2004) Mutagenic insertion and chromosome engineering resource (MICER). Nat Genet 36:867–871

    Article  PubMed  CAS  Google Scholar 

  24. Hooper M, Hardy K, Handyside A et al (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295

    Article  PubMed  CAS  Google Scholar 

  25. Itohara S, Mombaerts P, Lafaille J et al (1993) T cell receptor delta gene mutant mice: independent generation of alpha beta T cells and programmed rearrangements of gamma delta TCR genes. Cell 72:337–348

    Article  PubMed  CAS  Google Scholar 

  26. O’Gorman S, Dagenais NA, Qian M et al (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci USA 94:14602–14607

    Article  PubMed  Google Scholar 

  27. Tucker KL, Wang Y, Dausman J et al (1997) A transgenic mouse strain expressing four drug-selectable marker genes. Nucleic Acids Res 25:3745–3746

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to P. Mombaerts for critical reading the manuscript, M. Omura for photos of ES cells and valuable comments, S. Nishimura for comments on chromosome engineering, and members of the Mombaerts laboratory for improvements in the methods. This work was supported in part by JSPS KAKENHI Grant Number 24500456.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ishii, T. (2013). Genetic Manipulation to Analyze Pheromone Responses: Knockouts of Multiple Receptor Genes. In: Touhara, K. (eds) Pheromone Signaling. Methods in Molecular Biology, vol 1068. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-619-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-619-1_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-618-4

  • Online ISBN: 978-1-62703-619-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics