Skip to main content

Isolation and Forward Genetic Analysis of Developmental Genes in Pea

  • Protocol
  • First Online:
Book cover Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1069))

  • 3192 Accesses

Abstract

Understanding of developmental processes relies heavily on isolation and functional characterization of relevant genes. The garden pea (Pisum sativum L.) is one of the classic model species in plant genetics and has been used for a wide range of physiological and molecular studies of plant development. Here we describe the resources and approaches available for isolation of genes and genetic characterization of loci affecting development in pea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franssen SU et al (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12:227

    Article  PubMed  CAS  Google Scholar 

  2. Kaur S et al (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104

    Article  PubMed  CAS  Google Scholar 

  3. Rose TM et al (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26:1637–1644

    Article  Google Scholar 

  4. Hecht V et al (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434

    Article  PubMed  CAS  Google Scholar 

  5. Coyne CJ et al (2007) Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes. Genome 50:871–875

    Article  PubMed  CAS  Google Scholar 

  6. Hofer J et al (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell 21:420–428

    Article  PubMed  CAS  Google Scholar 

  7. Bordat A et al (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 (Bethesda) 1:93–103

    Article  CAS  Google Scholar 

  8. Weller JL et al (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci U S A 109:21158–21163

    Article  PubMed  CAS  Google Scholar 

  9. Smykal P et al (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115

    Article  Google Scholar 

  10. Deulvot C et al (2010) Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics 11:468

    Article  PubMed  Google Scholar 

  11. Laucou V et al (1998) Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theor Appl Genet 97:905–915

    Article  CAS  Google Scholar 

  12. Gilpin BJ et al (1997) A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor Appl Genet 95: 1289–1299

    Article  CAS  Google Scholar 

  13. McPhee KE et al (2012) Mapping QTL for Fusarium wilt race 2 partial resistance in pea (Pisum sativum). Plant Breed 131:300–306

    Article  CAS  Google Scholar 

  14. Tar’an B et al (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107: 1482–1491

    Article  PubMed  Google Scholar 

  15. Bourion V et al (2010) Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theor Appl Genet 121:71–86

    Article  PubMed  Google Scholar 

  16. Ellis THN et al (1992) Linkage maps in pea. Genetics 130:649–663

    PubMed  CAS  Google Scholar 

  17. Lejeune-Hénaut I et al (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116:1105–1116

    Article  PubMed  Google Scholar 

  18. Prioul S et al (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea ( Pisum sativum L.), at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    Article  PubMed  CAS  Google Scholar 

  19. Weeden NF et al (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4

    Google Scholar 

  20. Davey JW et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12: 499–510

    Article  PubMed  CAS  Google Scholar 

  21. Kilian A et al (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol Biol 888:67–89

    Article  PubMed  Google Scholar 

  22. Sidorova KK, Shumnyi VK (2003) Creation and genetic study of a collection of symbiotic mutants of the pea (Pisum sativum L.). Genetika 39:501–509

    PubMed  CAS  Google Scholar 

  23. Hecht V et al (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol 144:648–661

    Article  PubMed  CAS  Google Scholar 

  24. Platten JD et al (2005) Cryptochrome 1 contributes to blue-light sensing in pea. Plant Physiol 139:1472–1482

    Article  PubMed  CAS  Google Scholar 

  25. Weller JL, Murfet IC, Reid JB (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol 114: 1225–1236

    PubMed  CAS  Google Scholar 

  26. Rameau C et al (1997) New ramosus mutants at loci Rms1, Rms3 and Rms4 resulting from the mutation breeding program at Versailles. Pisum Genet 29:7–12

    Google Scholar 

  27. Triques K et al (2008) Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants. BMC Mol Biol 9:42

    Article  PubMed  Google Scholar 

  28. Duc G, Messager A (1989) Mutagenesis of pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen fixation. Plant Sci 60:207–213

    Article  Google Scholar 

  29. Borisov AY et al (1992) New symbiotic mutants of pea (Pisum sativum L.) affecting wither nodule initiation or symbiosome development. Symbiosis 14:297–313

    Google Scholar 

  30. Tsyganov VE et al (1994) New symbiotic mutants of pea obtained after mutagenesis of line SGE. Pisum Genet 26:36–37

    Google Scholar 

  31. Wang Z et al (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc Natl Acad Sci U S A 105:10414–10419

    Article  PubMed  CAS  Google Scholar 

  32. Koornneef M, Alonso-Blanco C, Stam P (1998) Genetic analysis. Methods Mol Biol 82:105–117

    PubMed  CAS  Google Scholar 

  33. Humphry M et al (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12: 866–878

    Article  PubMed  CAS  Google Scholar 

  34. Moreau C et al (2012) The B gene of pea encodes a defective flavonoid 3′,5′-hydroxylase, and confers pink flower color. Plant Physiol 159:759–768

    Article  PubMed  CAS  Google Scholar 

  35. Liew LC et al (2009) DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock. Plant Cell 21: 3198–3211

    Article  PubMed  CAS  Google Scholar 

  36. Couzigou JM et al (2012) NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell 24: 4498–44510

    Article  PubMed  CAS  Google Scholar 

  37. Zhuang LL et al (2012) LATHYROIDES, encoding a WUSCHEL-related Homeobox1 transcription factor, controls organ lateral growth, and regulates tendril and dorsal petal identities in garden pea Pisum sativum L.). Mol Plant 5:1333–1345

    Article  PubMed  CAS  Google Scholar 

  38. Hellens RP et al (2010) Identification of Mendel’s white flower character. PLoS One 5:e13230

    Article  PubMed  Google Scholar 

  39. Foucher F et al (2003) DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754

    Article  PubMed  CAS  Google Scholar 

  40. Krusell L et al (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65:861–871

    Article  PubMed  CAS  Google Scholar 

  41. Ovchinnikova E et al (2011) IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp. Mol Plant Microbe Interact 24:1333–1344

    Article  PubMed  CAS  Google Scholar 

  42. Hecht V et al (2011) The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23:147–161

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Weller, J.L., Hecht, V.F.G., Sussmilch, F.C. (2013). Isolation and Forward Genetic Analysis of Developmental Genes in Pea. In: Rose, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 1069. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-613-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-613-9_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-612-2

  • Online ISBN: 978-1-62703-613-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics