Skip to main content

High-Throughput and Targeted Genotyping of Lotus japonicus LORE1 Insertion Mutants

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1069))

Abstract

The Lotus Retrotransposon 1 (LORE1) is used for genome-wide mutagenesis of the model legume Lotus japonicus. Characterization of the LORE1 insertion sites in individual mutant lines is critical for development and use of the resource. Here we present guidelines for use of the LORE1 reverse genetics resource and provide detailed protocols for insertion site identification and validation. For high-throughput identification of insertions in up to 9,216 pooled lines, the FSTpoolit protocol takes advantage of Splinkerette adapters, molecular barcoding, 2D pooling, Illumina sequencing, and automated data analysis using the freely available FSTpoolit software. Complementing the high-throughput approach, we describe a simplified sequence-specific amplification polymorphism (SSAP) protocol well suited for quick identification of insertion sites in a limited number of lines. Both the FSTpoolit and simplified SSAP protocols are generally applicable to insertion site identification in any insertional mutagenesis setup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urbański DF, Małolepszy A, Stougaard J, Andersen SU (2012) Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus. Plant J 69:731–741

    Article  PubMed  Google Scholar 

  2. Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa H, Tabata S et al (2012) Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J 69:720–730

    Article  PubMed  CAS  Google Scholar 

  3. Yokota K, Fukai E, Madsen LH, Jurkiewicz A, Rueda P, Radutoiu S et al (2009) Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell 21:267–284

    Article  PubMed  CAS  Google Scholar 

  4. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  PubMed  CAS  Google Scholar 

  5. Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM, Miwa H et al (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 103:359–364

    Article  PubMed  CAS  Google Scholar 

  6. Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, Schauser L et al (2005) LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. Plant J 44:372–381

    Article  PubMed  CAS  Google Scholar 

  7. Fukai E, Umehara Y, Sato S, Endo M, Kouchi H, Hayashi M et al (2010) Derepression of the plant chromovirus LORE1 induces germline transposition in regenerated plants. PLoS Genet 6:e1000868

    Article  PubMed  Google Scholar 

  8. Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K et al (2003) Target Site Specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780

    Article  PubMed  Google Scholar 

  9. D’Erfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J 34:95–106

    Article  PubMed  Google Scholar 

  10. Sarni F, Grand C, Boudet AM (1984) Purification and properties of cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus X euramericana). Eur J Biochem 139:259–265

    Article  PubMed  CAS  Google Scholar 

  11. Lacombe E, Hawkins S, Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O et al (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    Article  PubMed  CAS  Google Scholar 

  12. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  13. Hansen J, Jørgensen JE, Stougaard J, Marcker KA (1989) Hairy roots—a short cut to transgenic root nodules. Plant Cell Rep 8:12–15

    Article  Google Scholar 

  14. Stougaard J (1995) Agrobacterium rhizogenes as a vector for transforming higher plants. Application in Lotus corniculatus transformation. Methods Mol Biol 49:49–61

    PubMed  CAS  Google Scholar 

  15. Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496

    Article  Google Scholar 

  16. Thykjær T, Schauser L, Danielsen D, Finneman J, Stougaard J (1998) Transgenic plants: agrobacterium-mediated transformation of the diploid legume Lotus japonicus. In: Celis JE (ed) Cell biology: a laboratory handbook, vol 3, 2nd edn. Academic, New York, pp 518–525

    Google Scholar 

  17. Devon RS, Porteous DJ, Brookes AJ (1995) Splinkerettes–improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res 23:1644–1645

    Article  PubMed  CAS  Google Scholar 

  18. Paithankar KR, Prasad KSN (1991) Precipitation of DNA by polyethylene glycol and ethanol. Nucleic Acids Res 19:1346

    Article  PubMed  CAS  Google Scholar 

  19. Fukai E, Dobrowolska AD, Madsen LH, Madsen EB, Umehara Y, Kouchi H et al (2008) Transposition of a 600 thousand-year-old LTR retrotransposon in the model legume Lotus japonicus. Plant Mol Biol 68:653–663

    Article  PubMed  CAS  Google Scholar 

  20. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Urbański, D.F., Małolepszy, A., Stougaard, J., Andersen, S.U. (2013). High-Throughput and Targeted Genotyping of Lotus japonicus LORE1 Insertion Mutants. In: Rose, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 1069. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-613-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-613-9_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-612-2

  • Online ISBN: 978-1-62703-613-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics