Skip to main content

Viral Vectors to Study Synaptic Function

  • Protocol
  • First Online:
  • 1323 Accesses

Part of the book series: Neuromethods ((NM,volume 82))

Abstract

Neurons display strong plasticity of their cellular properties, especially by modulation of their synaptic inputs. The development of viral vectors as biological tools has been extremely useful to molecularly manipulate protein expression in the rodent brain for a better understanding of the molecular mechanisms governing such synaptic plasticity. The use of viruses has several advantages. First, it allows for expression of a protein of interest in a temporally and spatially restricted manner. Second, it allows for a direct comparison of cellular properties between neurons expressing the protein of interest and neighboring control neurons from the same animal. Finally, when these viral vectors are used in vivo, the neurons expressing the virally encoded recombinant proteins are allowed to do so while remaining in their physiological environment in freely behaving animals. In this chapter, we describe how these viral vectors can be used to study synaptic function. As an example, we focus on the use of sindbis viruses to express mutant proteins in the rat hippocampus in vivo for investigation of their role in synaptic function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  PubMed  CAS  Google Scholar 

  2. Turrigiano G (2011) Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci 34:89–103

    Article  PubMed  CAS  Google Scholar 

  3. Knafo S, Ariav G, Barkai E, Libersat F (2004) Olfactory learning-induced increase in spine density along the apical dendrites of CA1 hippocampal neurons. Hippocampus 14(7):819–825

    Article  PubMed  Google Scholar 

  4. Leuner B, Falduto J, Shors TJ (2003) Associative memory formation increases the observation of dendritic spines in the hippocampus. J Neurosci 23(2):659–665

    PubMed  CAS  Google Scholar 

  5. Restivo L, Roman FS, Ammassari-Teule M, Marchetti E (2006) Simultaneous olfactory discrimination elicits a strain-specific increase in dendritic spines in the hippocampus of inbred mice. Hippocampus 16(5):472–479

    Article  PubMed  Google Scholar 

  6. Restivo L, Vetere G, Bontempi B, Ammassari-Teule M (2009) The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci 29(25):8206–8214

    Article  PubMed  CAS  Google Scholar 

  7. Matsuo N, Reijmers L, Mayford M (2008) Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science 319(5866):1104–1107

    Article  PubMed  CAS  Google Scholar 

  8. Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-Garcia JM (2010) Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci USA 107(6):2652–2657

    Article  PubMed  CAS  Google Scholar 

  9. Gruart A, Munoz MD, Delgado-Garcia JM (2006) Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 26(4):1077–1087

    Article  PubMed  CAS  Google Scholar 

  10. Lange-Asschenfeldt C, Lohmann P, Riepe MW (2007) Spatial performance in a complex maze is associated with persistent long-term potentiation enhancement in mouse hippocampal slices at early training stages. Neuroscience 147(2):318–324

    Article  PubMed  CAS  Google Scholar 

  11. Makhracheva-Stepochkina D, Frey S, Frey JU, Korz V (2008) Spatial learning in the holeboard impairs an early phase of long-term potentiation in the rat hippocampal CA1-region. Neurobiol Learn Mem 89(4):545–551

    Article  PubMed  Google Scholar 

  12. Sacchetti B, Lorenzini CA, Baldi E, Bucherelli C, Roberto M, Tassoni G et al (2002) Time-dependent inhibition of hippocampal LTP in vitro following contextual fear conditioning in the rat. Eur J Neurosci 15(1):143–150

    Article  PubMed  Google Scholar 

  13. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313(5790):1093–1097

    Article  PubMed  CAS  Google Scholar 

  14. Marie H, Morishita W, Yu X, Calakos N, Malenka RC (2005) Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45(5):741–752

    Article  PubMed  CAS  Google Scholar 

  15. McKee AG, Loscher JS, O’Sullivan NC, Chadderton N, Palfi A, Batti L et al (2010) AAV-mediated chronic over-expression of SNAP-25 in adult rat dorsal hippocampus impairs memory-associated synaptic plasticity. J Neurochem 112(4):991–1004

    Article  PubMed  CAS  Google Scholar 

  16. Schluter OM, Xu W, Malenka RC (2006) Alternative N-terminal domains of PSD-95 and SAP97 govern activity-dependent regulation of synaptic AMPA receptor function. Neuron 51(1):99–111

    Article  PubMed  CAS  Google Scholar 

  17. Zhu JJ, Qin Y, Zhao M, Van AL, Malinow R (2002) Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110(4):443–455

    Article  PubMed  CAS  Google Scholar 

  18. Dong Y, Green T, Saal D, Marie H, Neve R, Nestler EJ et al (2006) CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci 9(4):475–477

    Article  PubMed  CAS  Google Scholar 

  19. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T et al (2003) APP processing and synaptic function. Neuron 37(6):925–937

    Article  PubMed  CAS  Google Scholar 

  20. Kim J, Dittgen T, Nimmerjahn A, Waters J, Pawlak V, Helmchen F et al (2004) Sindbis vector SINrep(nsP2S726): a tool for rapid heterologous expression with attenuated cytotoxicity in neurons. J Neurosci Methods 133(1–2):81–90

    Article  PubMed  CAS  Google Scholar 

  21. Ehrengruber MU, Lundstrom K, Schweitzer C, Heuss C, Schlesinger S, Gahwiler BH (1999) Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc Natl Acad Sci USA 96(12):7041–7046

    Article  PubMed  CAS  Google Scholar 

  22. Lundstrom K (2005) Biology and application of alphaviruses in gene therapy. Gene Ther 12(Suppl 1):S92–S97

    Article  PubMed  CAS  Google Scholar 

  23. Vetere G, Marchetti C, Benevento M, Tafi E, Marie H, Ammassari-Teule M (2011) Viral-mediated expression of a constitutively active form of CREB in the dentate gyrus does not induce abnormally enduring fear memory. Behav Brain Res 222(2):394–396

    Article  PubMed  CAS  Google Scholar 

  24. Restivo L, Tafi E, Ammassari-Teule M, Marie H (2009) Viral-mediated expression of a constitutively active form of CREB in hippocampal neurons increases memory. Hippocampus 19(3):228–234

    Article  PubMed  CAS  Google Scholar 

  25. Molnar P, Hickman JJ (2007) Patch-clamp methods and protocols, vol 403. Methods in Molecular Biology, Springer Protocols

    Book  Google Scholar 

  26. Marchetti C, Tafi E, Marie H (2011) Viral-mediated expression of a constitutively active form of cAMP response element binding protein in the dentate gyrus increases long term synaptic plasticity. Neuroscience 190:21–26

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi T, Svoboda K, Malinow R (2003) Experience strengthening transmission by driving AMPA receptors into synapses. Science 299(5612):1585–1588

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Franck Aguila for design of figures and Fabien Lanté for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marie, H. (2014). Viral Vectors to Study Synaptic Function. In: Brambilla, R. (eds) Viral Vector Approaches in Neurobiology and Brain Diseases. Neuromethods, vol 82. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-610-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-610-8_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-609-2

  • Online ISBN: 978-1-62703-610-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics