Skip to main content

Viral Vector-Based Techniques for Optogenetic Modulation In Vivo

  • Protocol
  • First Online:
Viral Vector Approaches in Neurobiology and Brain Diseases

Part of the book series: Neuromethods ((NM,volume 82))

Abstract

Optogenetics is a technical methodology that allows direct light-based manipulation of genetically specified cells. Optogenetic methods have provided novel insights into the role of defined neuronal populations in brain function and animal behavior. An expanding palette of single-component optogenetic tools provides powerful interventional strategies for modulating the function of targeted neurons in awake, behaving mammals and for detailed interrogation of circuit physiology in vitro. Although several genetic methods can be utilized for delivering these genes into target cell populations, the use of viral vectors for delivery of optogenetic tools has several important advantages. In recent years, techniques for viral vector-mediated delivery of optogenetic tools have improved and expanded significantly. These techniques now allow modular use of optogenetic tools in defined cell types and circuits and dovetail well with genetic mouse models and recombinase-based driver lines. Here, we review the use of viral vectors for delivering genes encoding optogenetic tools into the rodent brain and provide a detailed protocol for viral transduction of mouse cortical neurons and chronic implantation of a fiberoptic connector for light delivery in vivo.

Mahn and Ron contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spudich JL, Yang CS, Jung KH, Spudich EN (2000) Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16:365–392

    Article  PubMed  CAS  Google Scholar 

  2. Nagel G et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  PubMed  CAS  Google Scholar 

  3. Nagel G et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945

    Article  PubMed  CAS  Google Scholar 

  4. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  PubMed  CAS  Google Scholar 

  5. Li X et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci USA 102:17816–17821

    Article  PubMed  CAS  Google Scholar 

  6. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  PubMed  CAS  Google Scholar 

  7. Zhang F et al (2011) The microbial opsin family of optogenetic tools. Cell 147: 1446–1457

    Article  PubMed  CAS  Google Scholar 

  8. Zhang F et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–642

    Article  PubMed  CAS  Google Scholar 

  9. Chow BY et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463: 98–102

    Article  PubMed  CAS  Google Scholar 

  10. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  PubMed  CAS  Google Scholar 

  11. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  PubMed  CAS  Google Scholar 

  12. Kravitz AV, Kreitzer AC (2011) Optogenetic manipulation of neural circuitry in vivo. Curr Opin Neurobiol 21:433–439, available at http://www.ncbi.nlm.nih.gov/pubmed/21420852

    Article  PubMed  CAS  Google Scholar 

  13. Mattis J et al (2011) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172

    Article  PubMed  Google Scholar 

  14. Dittgen T et al (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA 101:18206–18211

    Article  PubMed  CAS  Google Scholar 

  15. Monahan PE, Samulski RJ (2000) Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 6:433–440

    Article  PubMed  CAS  Google Scholar 

  16. Nathanson JL et al (2009) Short promoters in viral vectors drive selective expression in mammalian inhibitory neurons, but do not restrict activity to specific inhibitory cell-types. Front Neural Circuits 3:19

    Article  PubMed  Google Scholar 

  17. Knobloch HS et al (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–566

    Article  PubMed  CAS  Google Scholar 

  18. Burger C et al (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317

    Article  PubMed  CAS  Google Scholar 

  19. Kato S et al (2011) Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 22:1511–1523

    Article  PubMed  CAS  Google Scholar 

  20. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  PubMed  CAS  Google Scholar 

  21. Tsai H-C et al (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–1084

    Article  PubMed  CAS  Google Scholar 

  22. Zolotukhin S et al (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28:158–167

    Article  PubMed  CAS  Google Scholar 

  23. Nathanson JL, Yanagawa Y, Obata K, Callaway EM (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161:441–450

    Article  PubMed  CAS  Google Scholar 

  24. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Article  PubMed  CAS  Google Scholar 

  25. Benzekhroufa K, Liu B-H, Teschemacher AG, Kasparov S (2009) Targeting central serotonergic neurons with lentiviral vectors based on a transcriptional amplification strategy. Gene Ther 16:681–688

    Article  PubMed  CAS  Google Scholar 

  26. Gradinaru V et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    Article  PubMed  CAS  Google Scholar 

  27. Aravanis AM et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156

    Article  PubMed  Google Scholar 

  28. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359

    Article  PubMed  CAS  Google Scholar 

  29. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  PubMed  CAS  Google Scholar 

  30. Yizhar O et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  PubMed  CAS  Google Scholar 

  31. Grimm D, Kay MA (2003) From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 3:281–304

    Article  PubMed  CAS  Google Scholar 

  32. Duque S et al (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17:1187–1196

    Article  PubMed  CAS  Google Scholar 

  33. Foust K et al (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65

    Article  PubMed  CAS  Google Scholar 

  34. Dayton R, Wang D, Klein R (2012) The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin Biol Ther 12:757–766

    Article  PubMed  CAS  Google Scholar 

  35. Cearley CN, Wolfe JH (2007) A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 27:9928–9940

    Article  PubMed  CAS  Google Scholar 

  36. Raghavan R et al (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20:E12. doi:10.3171/foc.2006.20.4.7

    Article  PubMed  Google Scholar 

  37. Mastakov M, Baer K, Xu R, Fitzsimons H, During M (2001) Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol Ther 3:225–232

    Article  PubMed  CAS  Google Scholar 

  38. Carty N et al (2010) Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. J Neurosci Methods 194:144–153

    Article  PubMed  CAS  Google Scholar 

  39. Nguyen JB, Sanchez-Pernaute R, Cunningham J, Bankiewicz K (2001) Convection-enhanced delivery of AAV-2 combined with heparin increases TK gene transfer in the rat brain. Neuroreport 12:1961–1964

    Article  PubMed  CAS  Google Scholar 

  40. Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2 – assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668

    Article  PubMed  CAS  Google Scholar 

  41. Arenkiel BR et al (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54: 205–218

    Article  PubMed  CAS  Google Scholar 

  42. Cruikshank SJ, Urabe H, Nurmikko AV, Connors BW (2010) Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65:230–245

    Article  PubMed  CAS  Google Scholar 

  43. Atasoy D, Betley JN, Su HH, Sternson SM (2012) Deconstruction of a neural circuit for hunger. Nature 488:172–177. doi:10.1038/nature11270

    Article  PubMed  CAS  Google Scholar 

  44. Haubensak W et al (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468:270–276

    Article  PubMed  CAS  Google Scholar 

  45. Stuber GD et al (2011) Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475:377–380

    Article  PubMed  CAS  Google Scholar 

  46. Tye KM et al (2011) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471:358–362

    Article  PubMed  CAS  Google Scholar 

  47. Lee JH et al (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465:788–792

    Article  PubMed  CAS  Google Scholar 

  48. Kahn I et al (2011) Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J Neurosci 31:15086–15091

    Article  PubMed  CAS  Google Scholar 

  49. Desai M et al (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105:1393–1405

    Article  PubMed  CAS  Google Scholar 

  50. Etessami R et al (2000) Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J Gen Virol 81:2147–2153

    PubMed  CAS  Google Scholar 

  51. Wickersham IR, Finke S, Conzelmann K, Callaway EM (2007) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4:2006–2008

    Google Scholar 

  52. Miyamichi K et al (2011) Cortical representations of olfactory input by trans-synaptic tracing. Nature 472:191–196

    Article  PubMed  CAS  Google Scholar 

  53. Marshel JH, Mori T, Nielsen KJ, Callaway EM (2010) Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 67:562–574

    Article  PubMed  CAS  Google Scholar 

  54. Osakada F et al (2011) New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71:617–631

    Article  PubMed  CAS  Google Scholar 

  55. Wickersham IR et al (2007) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53:639–647

    Article  PubMed  CAS  Google Scholar 

  56. Lammel S et al (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:212–217

    Article  PubMed  CAS  Google Scholar 

  57. Madisen L et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802

    Article  PubMed  CAS  Google Scholar 

  58. Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18:617–623

    Article  PubMed  CAS  Google Scholar 

  59. Köbbert C et al (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351

    Article  PubMed  Google Scholar 

  60. Madisen L et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140

    Article  PubMed  CAS  Google Scholar 

  61. Zemanick MC, Strick PL, Dix RD (1991) Direction of transneuronal transport of herpes simplex virus 1 in the primate motor system is strain-dependent. Proc Natl Acad Sci USA 88:8048–8051

    Article  PubMed  CAS  Google Scholar 

  62. Lo L, Anderson DJ (2011) A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 72:938–950

    Article  PubMed  CAS  Google Scholar 

  63. Lima SQ, Hromádka T, Znamenskiy P, Zador AM, Nitabach MN (2009) PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 4:e6099

    Article  PubMed  Google Scholar 

  64. Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates. Gulf Professional Publishing, Boston, MA, p 100

    Google Scholar 

Download references

Acknowledgments

We thank the entire Yizhar lab for helpful comments and discussions on the manuscript and protocol. This work was supported by grants from the Israeli Science Foundation (ISF grant 1351/12) and by the Israeli Center of Research Excellence (I-CORE) in Cognition (I-CORE Program 51/11). Ofer Yizhar is the incumbent of the Gertrude and Philip Nollman Career Development Chair.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mahn, M., Ron, S., Yizhar, O. (2014). Viral Vector-Based Techniques for Optogenetic Modulation In Vivo. In: Brambilla, R. (eds) Viral Vector Approaches in Neurobiology and Brain Diseases. Neuromethods, vol 82. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-610-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-610-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-609-2

  • Online ISBN: 978-1-62703-610-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics