Skip to main content

In Vivo Gene Silencing by Virally Delivered MicroRNA

  • Protocol
  • First Online:
Viral Vector Approaches in Neurobiology and Brain Diseases

Part of the book series: Neuromethods ((NM,volume 82))

Abstract

Loss of function is a standard approach to elucidate the function of a specific protein. Among these multiple strategies for silencing genes in living animals, genetic knockout in mice have been so far most frequently used. However, short hairpin RNAs (shRNAs) and microRNAs (miRNAs) delivered into the brain by viruses can achieve region-specific gene knockdown in any species at much lower cost and with shorter turnaround time. Recent advances in understanding of the endogenous miRNA function enabled the design of miRNAs as well as miRNA-adapted shRNA that efficiently enter the miRNA-processing pathway and mediate the gene silencing. Predesigned and premade miRNA for many rodent and human genes are now available commercially. Lentiviral vectors designed to express miRNA along with a fluorescent marker are also widely available. Here, we describe the use of virally delivered miRNAs for gene knockdown in living animals. The technique involves multiple procedures starting from the selection of appropriate miRNA sequences, then preparation of the lentiviral vector, production of the infections lentivirus suitable for the in vivo delivery, injection of the virus into the brain, and the testing of the animals for the measure of interest such as behavior, and, finally, post hoc determination of the infection efficiency and the degree of the in vivo knockdown in each animal.

The virally delivered miRNA knockdown is powerful enough to achieve physiologically relevant protein knockdown in the brain of living animals. Furthermore, the knockdown procedure is flexible enough to be adapted to requirements of almost any in vivo experiment, and, thus, has a large yet unrealized potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 19:806–811

    Article  Google Scholar 

  2. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  3. Mello CC, Conte D (2004) Revealing the world of RNA interfer. Nature 431:338–342

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  5. Zamore PD, Tuschl T, Sharp PA et al (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

  6. Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  PubMed  CAS  Google Scholar 

  7. Manche L, Green SR, Schmedt C et al (1992) Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 12:5238–5248

    PubMed  CAS  Google Scholar 

  8. Hunter T, Hunt T, Jackson RJ et al (1975) The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. J Biol Chem 250:409–417

    PubMed  CAS  Google Scholar 

  9. Minks MA, West DK, Benvin S et al (1979) Structural requirements of double-stranded RNA for the activation of 2′,5′-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J Biol Chem 254:10180–10183

    PubMed  CAS  Google Scholar 

  10. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  11. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  PubMed  CAS  Google Scholar 

  12. Pillai RS, Bhattacharyya SN, Artus CG et al (2005) Molecular biology: inhibition of translational initiation by let-7 microRNA in human cells. Science 309:1473–1576

    Article  Google Scholar 

  13. Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  PubMed  CAS  Google Scholar 

  14. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    Article  PubMed  CAS  Google Scholar 

  15. Yekta S, Shih I-H, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  PubMed  CAS  Google Scholar 

  16. Petersen CP, Bordeleau M-E, Pelletier J et al (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21: 533–542

    Article  PubMed  CAS  Google Scholar 

  17. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  18. Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  PubMed  CAS  Google Scholar 

  19. Aravin AA, Lagos-Quintana M, Yalcin A et al (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337–350

    Article  PubMed  CAS  Google Scholar 

  20. Brennecke J, Hipfner DR, Stark A et al (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  PubMed  CAS  Google Scholar 

  21. Lee Y, Jeon K, Lee J-T et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 17:4663–4670

    Article  Google Scholar 

  22. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  23. Yi R, Qin Y, Macara IG et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  24. Lund E, Güttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  CAS  Google Scholar 

  25. Hutvágner G, McLachlan J, Pasquinelli AE et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  PubMed  Google Scholar 

  26. Nykänen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  PubMed  Google Scholar 

  27. Martinez J, Patkaniowska A, Urlaub H et al (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  PubMed  CAS  Google Scholar 

  28. Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  PubMed  CAS  Google Scholar 

  29. Rand TA, Ginalski K, Grishin NV et al (2004) Biochemical identification of Argonaute 2 as the protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci USA 101:14385–14389

    Article  PubMed  CAS  Google Scholar 

  30. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30: 106–114

    Article  PubMed  CAS  Google Scholar 

  31. Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  PubMed  CAS  Google Scholar 

  32. Lee Y, Hur I, Park SY et al (2006) The role of PACT in the RNA silencing pathway. EMBO J 25:522–532

    Article  PubMed  CAS  Google Scholar 

  33. Maniataki E, Mourelatos Z (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 19:2979–2990

    Article  PubMed  CAS  Google Scholar 

  34. Gregory RI, Chendrimada TP, Cooch N et al (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  PubMed  CAS  Google Scholar 

  35. Matranga C, Tomari Y, Shin C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  PubMed  CAS  Google Scholar 

  36. Rand TA, Petersen S, Du F et al (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  PubMed  CAS  Google Scholar 

  37. Wang B, Li S, Qi HH et al (2009) Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins. Nat Struct Mol Biol 16:1259–1266

    Article  PubMed  CAS  Google Scholar 

  38. Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12:19–31

    Article  PubMed  CAS  Google Scholar 

  39. Schwarz DS, Hutvágner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  40. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  PubMed  CAS  Google Scholar 

  41. Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131:1097–1108

    Article  PubMed  CAS  Google Scholar 

  42. Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903

    Article  PubMed  CAS  Google Scholar 

  43. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed  CAS  Google Scholar 

  44. Paddison PJ, Caudy AA, Bernstein E et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  PubMed  CAS  Google Scholar 

  45. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  46. Paul CP, Good PD, Winer I et al (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508

    Article  PubMed  CAS  Google Scholar 

  47. Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99:6047–6052

    Article  PubMed  CAS  Google Scholar 

  48. Chang K, Elledge SJ, Hannon GJ (2006) Lessons from Nature: microRNA-based shRNA libraries. Nat Methods 3:707–714

    Article  PubMed  CAS  Google Scholar 

  49. Dickins RA, Hemann MT, Zilfou JT et al (2005) Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 37:1289–1295

    PubMed  CAS  Google Scholar 

  50. Stegmeier F, Hu G, Rickles RJ et al (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 102:13212–13217

    Article  PubMed  CAS  Google Scholar 

  51. Silva JM, Li MZ, Chang K et al (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37:1281–1288

    PubMed  CAS  Google Scholar 

  52. Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  53. Dieci G, Fiorino G, Castelnuovo M et al (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23:614–622

    Article  PubMed  CAS  Google Scholar 

  54. White RJ (2011) Transcription by RNA polymerase III: more complex than we thought. Nat Rev Genet 12:459–463

    Article  PubMed  CAS  Google Scholar 

  55. Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  PubMed  CAS  Google Scholar 

  56. Wu H, Ma H, Ye C et al (2011) Improved siRNA/shRNA functionality by mismatched duplex. PLoS One 6:e28580

    Article  PubMed  CAS  Google Scholar 

  57. Bridge AJ, Pebernard S, Ducraux A et al (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34:263–264

    Article  PubMed  CAS  Google Scholar 

  58. Kenworthy R, Lambert D, Yang F et al (2009) Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation. Nucleic Acids Res 37:6587–6599

    Article  PubMed  CAS  Google Scholar 

  59. McBride JL, Boudreau RL, Harper SQ et al (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 105:5868–5873

    Article  PubMed  CAS  Google Scholar 

  60. Christensen M, Larsen LA, Kauppinen S et al (2010) Recombinant Adeno-Associated Virus-Mediated microRNA Delivery into the Postnatal Mouse Brain Reveals a Role for miR-134 in Dendritogenesis in Vivo. Front Neural Circuits 3:16

    PubMed  Google Scholar 

  61. Hommel JD, Sears RM, Georgescu D et al (2003) Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 9:1539–1544

    Article  PubMed  CAS  Google Scholar 

  62. Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  PubMed  CAS  Google Scholar 

  63. Beer S, Bellovin DI, Lee JS et al (2010) Low-level shRNA cytotoxicity can contribute to MYC-induced hepatocellular carcinoma in adult mice. Mol Ther 18:161–170

    Article  PubMed  CAS  Google Scholar 

  64. Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    Article  PubMed  CAS  Google Scholar 

  65. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of-target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  66. Giraldez AJ, Mishima Y, Rihel J et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  PubMed  CAS  Google Scholar 

  67. (2010) BLOCK-iT™ Pol II miR RNAi Expression Vector Kits. Gateway®-adapted expression vector for the expression of microRNA (miRNA) in mammalian cells under control of Pol II promoters, User Manual

    Google Scholar 

  68. Ahmed MR, Berthet A, Bychkov E et al (2010) Lentiviral overexpression of GRK6 alleviates L-dopa-induced dyskinesia in experimental Parkinson’s disease. Sci Transl Med 2:28ra28

    Article  PubMed  Google Scholar 

  69. Gurevich EV, Tesmer JJ, Mushegian A et al (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–69

    Article  PubMed  CAS  Google Scholar 

  70. Anderson GR, Cao Y, Davidson S et al (2010) R7BP complexes with RGS9-2 and RGS7 in the striatum differentially control motor learning and locomotor responses to cocaine. Neuropsychopharmacology 35:1040–1050

    Article  PubMed  CAS  Google Scholar 

  71. Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1:241–245

    Article  PubMed  CAS  Google Scholar 

  72. Ahmed MR, Bychkov E, Gurevich VV et al (2007) Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J Neurochem 104: 1622–1636

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gurevich, E.V., Ahmed, M.R., Carl, Y. (2014). In Vivo Gene Silencing by Virally Delivered MicroRNA. In: Brambilla, R. (eds) Viral Vector Approaches in Neurobiology and Brain Diseases. Neuromethods, vol 82. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-610-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-610-8_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-609-2

  • Online ISBN: 978-1-62703-610-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics