Skip to main content

Lentiviral Vectors as Research Tools in Neurobiology: Design and Production

  • Protocol
  • First Online:
Viral Vector Approaches in Neurobiology and Brain Diseases

Part of the book series: Neuromethods ((NM,volume 82))

Abstract

Viral vectors are now common in contemporary neuroscience research and their use as gene transfer tools for the central nervous system has seen an enormous growth in the last 2 decades. This chapter discusses about designing, production, and use of lentiviral vectors (LVs), one of the most popular and versatile system currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knipe D, Howley P (eds) (2006) Fields virology, 5th edn. Wolters Kluwer, Philadelphia PA

    Google Scholar 

  2. Buchschacher GL Jr, Panganiban AT (1992) Human immunodeficiency virus vectors for inducible expression of foreign genes. J Virol 66(5):2731–2739

    PubMed  CAS  Google Scholar 

  3. Parolin C, Dorfman T, Palu G, Gottlinger H, Sodroski J (1994) Analysis in human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer into human lymphocytes. J Virol 68(6):3888–3895

    PubMed  CAS  Google Scholar 

  4. Poznansky M, Lever A, Bergeron L, Haseltine W, Sodroski J (1991) Gene transfer into human lymphocytes by a defective human immunodeficiency virus type 1 vector. J Virol 65(1):532–536

    PubMed  CAS  Google Scholar 

  5. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    Article  PubMed  CAS  Google Scholar 

  6. Reiser J, Harmison G, Kluepfel-Stahl S, Brady RO, Karlsson S, Schubert M (1996) Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc Natl Acad Sci USA 93(26):15266–15271

    Article  PubMed  CAS  Google Scholar 

  7. Akkina RK, Walton RM, Chen ML, Li QX, Planelles V, Chen IS (1996) High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 70(4):2581–2585

    PubMed  CAS  Google Scholar 

  8. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90(17):8033–8037

    Article  PubMed  CAS  Google Scholar 

  9. Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10(8):4239–4242

    PubMed  CAS  Google Scholar 

  10. Blomer U, Naldini L, Verma IM, Trono D, Gage FH (1996) Applications of gene therapy to the CNS. Hum Mol Genet 5(Spec No):1397–1404

    PubMed  Google Scholar 

  11. Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93(21):11382–11388

    Article  PubMed  CAS  Google Scholar 

  12. Jakobsson J, Lundberg C (2006) Lentiviral vectors for use in the central nervous system. Mol Ther 13(3):484–493

    Article  PubMed  CAS  Google Scholar 

  13. Lundberg C, Bjorklund T, Carlsson T, Jakobsson J, Hantraye P, Deglon N et al (2008) Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr Gene Ther 8(6):461–473

    Article  PubMed  CAS  Google Scholar 

  14. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72(11):8463–8471

    PubMed  CAS  Google Scholar 

  15. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12): 9873–9880

    PubMed  CAS  Google Scholar 

  16. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72(10):8150–8157

    PubMed  CAS  Google Scholar 

  17. Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4(4):495–505

    Article  PubMed  CAS  Google Scholar 

  18. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25(2):217–222

    Article  PubMed  CAS  Google Scholar 

  19. Gascon S, Paez-Gomez JA, Diaz-Guerra M, Scheiffele P, Scholl FG (2008) Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons. J Neurosci Methods 168(1):104–112

    Article  PubMed  CAS  Google Scholar 

  20. Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23(1):108–116

    Article  PubMed  CAS  Google Scholar 

  21. Zhu Y, Feuer G, Day SL, Wrzesinski S, Planelles V (2001) Multigene lentiviral vectors based on differential splicing and translational control. Mol Ther 4(4):375–382

    Article  PubMed  CAS  Google Scholar 

  22. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF et al (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594

    Article  PubMed  CAS  Google Scholar 

  23. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5(4):387–398

    Article  PubMed  CAS  Google Scholar 

  24. Papale A, Cerovic M, Brambilla R (2009) Viral vector approaches to modify gene expression in the brain. J Neurosci Methods 185(1):1–14

    Article  PubMed  CAS  Google Scholar 

  25. Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274(5293):1678–1683

    Article  PubMed  CAS  Google Scholar 

  26. Konopka W, Duniec K, Mioduszewska B, Proszynski T, Jaworski J, Kaczmarek L (2005) hCMV and Tet promoters for inducible gene expression in rat neurons in vitro and in vivo. Neurobiol Dis 19(1–2):283–292

    Article  PubMed  CAS  Google Scholar 

  27. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89(12):5547–5551

    Article  PubMed  CAS  Google Scholar 

  28. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 97(14):7963–7968

    Article  PubMed  CAS  Google Scholar 

  29. Pluta K, Luce MJ, Bao L, Agha-Mohammadi S, Reiser J (2005) Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J Gene Med 7(6):803–817

    Article  PubMed  CAS  Google Scholar 

  30. Benabdellah K, Cobo M, Munoz P, Toscano MG, Martin F (2011) Development of an all-in-one lentiviral vector system based on the original TetR for the easy generation of Tet-ON cell lines. PLoS One 6(8):e23734

    Article  PubMed  CAS  Google Scholar 

  31. Gentner B, Schira G, Giustacchini A, Amendola M, Brown BD, Ponzoni M et al (2009) Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 6(1):63–66

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Papale, A., Brambilla, R. (2014). Lentiviral Vectors as Research Tools in Neurobiology: Design and Production. In: Brambilla, R. (eds) Viral Vector Approaches in Neurobiology and Brain Diseases. Neuromethods, vol 82. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-610-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-610-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-609-2

  • Online ISBN: 978-1-62703-610-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics