Skip to main content

Genome-Wide Analysis of Transcription Factor-Binding Sites in Skeletal Muscle Cells Using ChIP-Seq

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1067))

Abstract

Transcriptional regulation of gene expression constitutes a fundamental mechanism of many developmental processes. Therefore, identification and characterization of binding sites of transcription factors are important for uncovering the mechanisms of a particular developmental process. Here, we describe detailed procedures for genome-wide analysis of binding sites of a transcription factor involved in the fiber-type differentiation of skeletal muscle. By conducting ChIP-seq followed by a series of downstream analyses, in-depth information on binding sites of transcription factors can be obtained in a genome-wide manner.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  PubMed  CAS  Google Scholar 

  2. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  PubMed  CAS  Google Scholar 

  3. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  PubMed  CAS  Google Scholar 

  4. Hurd PJ, Nelson CJ (2009) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic 8:174–183

    Article  PubMed  CAS  Google Scholar 

  5. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  PubMed  CAS  Google Scholar 

  6. Chen Y, Negre N, Li Q, Mieczkowska JO, Slattery M, Liu T et al (2012) Systematic evaluation of factors influencing ChIP-seq fidelity. Nat Methods 9:609–614

    Article  PubMed  CAS  Google Scholar 

  7. Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147:1408–1419

    Article  PubMed  CAS  Google Scholar 

  8. An CI, Dong Y, Hagiwara N (2011) Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC Dev Biol 11:59

    Article  PubMed  CAS  Google Scholar 

  9. Bowles J, Schepers G, Koopman P (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227:239–255

    Article  PubMed  CAS  Google Scholar 

  10. Hagiwara N (2011) Sox6, jack of all trades: a versatile regulatory protein in vertebrate development. Dev Dyn 240:1311–1321

    Article  PubMed  CAS  Google Scholar 

  11. Kamachi Y, Uchikawa M, Kondoh H (2000) Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 16:182–187

    Article  PubMed  CAS  Google Scholar 

  12. Wegner M (1999) From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 27:1409–1420

    Article  PubMed  CAS  Google Scholar 

  13. Hagiwara N, Yeh M, Liu A (2007) Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn 236:2062–2076

    Article  PubMed  CAS  Google Scholar 

  14. Hagiwara N, Ma B, Ly A (2005) Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H. Dev Dyn 234:301–311

    Article  PubMed  CAS  Google Scholar 

  15. Cauchy P, Benoukraf T, Ferrier P (2011) Processing ChIP-chip data: from the scanner to the browser. Methods Mol Biol 719:251–268

    Article  PubMed  CAS  Google Scholar 

  16. Gobel U, Reimer J, Turck F (2010) Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part B: ChIP-chip data analysis. Methods Mol Biol 631:161–184

    Article  PubMed  Google Scholar 

  17. Reimer JJ, Turck F (2010) Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part A: ChIP-chip molecular methods. Methods Mol Biol 631:139–160

    Article  PubMed  CAS  Google Scholar 

  18. Spiro S (2012) Genome-wide mapping of the binding sites of proteins that interact with DNA. Methods Mol Biol 881:137–156

    Article  PubMed  CAS  Google Scholar 

  19. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  Google Scholar 

  20. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  21. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    PubMed  CAS  Google Scholar 

  22. Jothi R, Cuddapah S, Barski A, Cui K, Zhao K (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 36:5221–5231

    Article  PubMed  CAS  Google Scholar 

  23. Narlikar L, Jothi R (2012) ChIP-Seq data analysis: identification of protein-DNA binding sites with SISSRs peak-finder. Methods Mol Biol 802:305–322

    Article  PubMed  CAS  Google Scholar 

  24. Blahnik KR, Dou L, O’Geen H, McPhillips T, Xu X, Cao AR et al (2010) Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res 38:e13

    Article  PubMed  Google Scholar 

  25. Salmon-Divon M, Dvinge H, Tammoja K, Bertone P et al (2010) PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci. BMC Bioinformatics 11:415

    Article  PubMed  Google Scholar 

  26. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    PubMed  CAS  Google Scholar 

  27. Schmidt D, Wilson MD, Spyrou C, Brown GD, Hadfield J, Odom DT et al (2009) ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods 48:240–248

    Article  PubMed  CAS  Google Scholar 

  28. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R et al (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5:1005–1010

    Article  PubMed  CAS  Google Scholar 

  29. Nowak DE, Tian B, Brasier AR (2005) Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation. Biotechniques 39:715–725

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Adam Jenkins for helpful discussions and Dr. Charles Nicolet at the DNA Technologies and Expression Analysis Core Facilities of the UC Davis Genome Center for assistance with the ChIP-seq experiments. This work was supported by Expression Analysis Core Seed Grant, Muscular Dystrophy Association (MDA 4135), and the National Institutes of Health (AR055209) (to N.H.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

An, CI., Hagiwara, N. (2013). Genome-Wide Analysis of Transcription Factor-Binding Sites in Skeletal Muscle Cells Using ChIP-Seq. In: Lee, TL., Shui Luk, A. (eds) Tiling Arrays. Methods in Molecular Biology, vol 1067. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-607-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-607-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-606-1

  • Online ISBN: 978-1-62703-607-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics