Skip to main content

Proteomics Analysis of Contact-Initiated Eph Receptor–Ephrin Signaling

  • Protocol
  • First Online:
Cell-Cell Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1066))

  • 2941 Accesses

Abstract

Large-scale biochemical analysis of cell-specific signaling can be interrogated in cocultures of Eph receptor- and ephrin-expressing cells by combining proteomics analysis with cell-specific metabolic labeling. In this chapter, we describe how to perform such large-scale analysis, including the generation of cells stably expressing the receptors and ligands of interest, optimization steps for Eph–ephrin coculture, and the proteomics analysis. As the experimental details may vary depending on the specific system that is being interrogated, the goal of the chapter is mainly to provide sufficient experimental context for experienced researchers to set up and conduct these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133: 38–52

    Article  PubMed  CAS  Google Scholar 

  2. Lackmann M, Boyd AW (2008) Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal 1:re2

    Article  PubMed  Google Scholar 

  3. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signaling and beyond. Nat Rev Cancer 10:165–180

    Article  PubMed  CAS  Google Scholar 

  4. Holland SJ, Gale NW, Mbamalu G et al (1996) Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383:722–725

    Article  PubMed  CAS  Google Scholar 

  5. Bruckner K, Pasquale EB, Klein R (1997) Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275: 1640–1643

    Article  PubMed  CAS  Google Scholar 

  6. Henkemeyer M, Orioli D, Henderson JT et al (1996) Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86:35–46

    Article  PubMed  CAS  Google Scholar 

  7. Holland SJ, Gale NW, Gish GD et al (1997) Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J 16:3877–3888

    Article  PubMed  CAS  Google Scholar 

  8. Wybenga-Groot LE, Baskin B, Ong SH et al (2001) Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106:745–757

    Article  PubMed  CAS  Google Scholar 

  9. Cowan CA, Henkemeyer M (2001) The SH2/SH3 adaptor Grb4 transduces Bephrin reverse signals. Nature 413:174–179

    Article  PubMed  CAS  Google Scholar 

  10. Ong S-E, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  11. Poliakov A, Cotrina ML, Pasini A et al (2008) Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway. J Cell Biol 183:933–947

    Article  PubMed  CAS  Google Scholar 

  12. Henkemeyer M, Marengere LE, McGlade J et al (1994) Immunolocalization of the Nuk receptor tyrosine kinase suggests roles in segmental patterning of the brain and axonogenesis. Oncogene 9:1001–1014

    PubMed  CAS  Google Scholar 

  13. Moriyoshi K, Richards LJ, Akazawa C et al (1996) Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 16:255–260

    Article  PubMed  CAS  Google Scholar 

  14. Jørgensen C, Sherman A, Chen GI et al (2009) Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326: 1502–1509

    Article  PubMed  Google Scholar 

  15. Ong S-E, Mann MA (2007) Practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protocol 1: 2650–2660

    Article  Google Scholar 

  16. Harsha HC, Molina H, Pandey A (2008) Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protocol 3:505–516

    Article  CAS  Google Scholar 

  17. Blagoev B, Mann M (2006) Quantitative proteomics to study mitogen-activated protein kinases. Methods 40:243–250

    Article  PubMed  CAS  Google Scholar 

  18. Van Hoof D, Pinkse MW, Oostwaard DW et al (2007) An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat Methods 4:677–678

    Article  PubMed  Google Scholar 

  19. Park SK, Liao L, Kim JY et al (2009) A computational approach to correct arginine-to-proline conversion in quantitative proteomics. Nat Methods 6:184–185

    Article  PubMed  CAS  Google Scholar 

  20. Bendall SC, Hughes C, Stewert MH et al (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7:1587–1597

    Article  PubMed  CAS  Google Scholar 

  21. Rush J, Moritz A, Lee KA et al (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Wolf-Yadlin A, Ross PL et al (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4: 1240–1250

    Article  PubMed  CAS  Google Scholar 

  23. Thingholm TE, Jensen ON, Robinson PJ et al (2007) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661–671

    Article  PubMed  Google Scholar 

  24. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protocol 4:698–705

    Article  CAS  Google Scholar 

  25. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  PubMed  CAS  Google Scholar 

  26. Shevchenko A, Tomas H, Havlisbreve J et al (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protocol 1:2856–2860

    Article  Google Scholar 

  27. Boisvert FM, Ahmad Y, Gierlinski M et al (2012) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics 11:M111.011429

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution of Tony Pawson and David Wilkinson. Claus Jorgensen is a recipient of a CR-UK Career Establishment Award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Jorgensen, C., Poliakov, A. (2013). Proteomics Analysis of Contact-Initiated Eph Receptor–Ephrin Signaling. In: Baudino, T. (eds) Cell-Cell Interactions. Methods in Molecular Biology, vol 1066. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-604-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-604-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-603-0

  • Online ISBN: 978-1-62703-604-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics