Skip to main content

High Temporal Resolution Imaging Reveals Endosomal Membrane Penetration and Escape of Adenoviruses in Real Time

  • Protocol
  • First Online:
Virus-Host Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1064))

Abstract

Imaging host–pathogen interactions in real time can provide significant insight into dynamic processes and provide information about time and space of their occurences. Here, we present detailed experimental instructions on how to image the membrane penetration process of the non-enveloped adenovirus in real time. The system is based on a cell line stably expressing the lectin galectin-3 fused to a fluorophore. Membrane-lytic events during adenovirus cell entry can be monitored by the recruitment of galectin-3 to galactose-containing membrane glycoproteins on the exo-surface of ruptured membranes. The simultaneous use of fluorescently labeled adenoviral capsids allows to image the events in unmatched temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsai B (2007) Penetration of nonenveloped viruses into the cytoplasm. Annu Rev Cell Dev Biol 23:23–43

    Article  CAS  PubMed  Google Scholar 

  2. Ginsberg HS, Horswood RL, Chanock RM et al (1990) Role of early genes in pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci USA 87(16):6191–6195

    Article  CAS  PubMed  Google Scholar 

  3. Aldhamen YA, Seregin SS, Amalfitano A (2011) Immune recognition of gene transfer vectors: focus on adenovirus as a paradigm. Front Immunol 2:40

    Article  PubMed Central  PubMed  Google Scholar 

  4. Wiethoff CM, Wodrich H, Gerace L et al (2005) Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 79(4):1992–2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wodrich H, Henaff D, Jammart B et al (2010) A capsid-encoded PPxY-motif facilitates adenovirus entry. PLoS Pathog 6(3):e1000808

    Article  PubMed Central  PubMed  Google Scholar 

  6. Maier O, Galan DL, Wodrich H et al (2010) An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature. Virology 402(1):11–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Barlan AU, Danthi P, Wiethoff CM (2011) Lysosomal localization and mechanism of membrane penetration influence nonenveloped virus activation of the NLRP3 inflammasome. Virology 412(2):306–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Barlan AU, Griffin TM, McGuire KA et al (2011) Adenovirus membrane penetration activates the NLRP3 inflammasome. J Virol 85(1):146–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. McGuire KA, Barlan AU, Griffin TM et al (2011) Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species. J Virol 85(20):10806–10813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Maier O, Marvin SA, Wodrich H et al (2012) Spatiotemporal dynamics of adenovirus membrane rupture and endosomal escape. J Virol 86(19):10821–10828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Paz I, Sachse M, Dupont N et al (2010) Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol 12(4):530–544

    Article  CAS  PubMed  Google Scholar 

  12. Dupont N, Lacas-Gervais S, Bertout J et al (2009) Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6(2):137–149

    Article  CAS  PubMed  Google Scholar 

  13. Mittereder N, March KL, Trapnell BC (1996) Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 70(11):7498–7509

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Rubin RW, Weiss GD (1975) Direct biochemical measurements of microtubule assembly and disassembly in Chinese hamster ovary cells. The effect of intercellular contact, cold, D2O, and N6, O2′-dibutyryl cyclic adenosine monophosphate. J Cell Biol 64(1):42–53

    Article  CAS  PubMed  Google Scholar 

  15. Greber UF, Webster P, Weber J et al (1996) The role of the adenovirus protease on virus entry into cells. EMBO J 15(8):1766–1777

    CAS  PubMed  Google Scholar 

  16. Weber J (1976) Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins. J Virol 17(2):462–471

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Barry MA, Weaver EA, Hofherr SE (2010) Rescue, amplification, purification, and PEGylation of replication defective first-generation adenoviral vectors. Methods Mol Biol 651:227–239

    Article  CAS  PubMed  Google Scholar 

  18. Jager L, Hausl MA, Rauschhuber C et al (2009) A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat Protoc 4(4):547–564

    Article  CAS  PubMed  Google Scholar 

  19. Tollefson AE, Kuppuswamy M, Shashkova EV et al (2007) Preparation and titration of CsCl-banded adenovirus stocks. Methods Mol Med 130:223–235

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by Equipe FRM 2011 Projet DEQ 20110421299 (H.W.). C.W. acknowledges funding from the NIH (AI082430) and American Heart Association (2261306). A.M.B. acknowledges support from the NIH (AI007508). We acknowledge the Bordeaux imaging centre (BIC) for help in setting up the live cell imaging acquisition. H.W. is an INSERM fellow.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Martinez, R., Burrage, A.M., Wiethoff, C.M., Wodrich, H. (2013). High Temporal Resolution Imaging Reveals Endosomal Membrane Penetration and Escape of Adenoviruses in Real Time. In: Bailer, S., Lieber, D. (eds) Virus-Host Interactions. Methods in Molecular Biology, vol 1064. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-601-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-601-6_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-600-9

  • Online ISBN: 978-1-62703-601-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics