Skip to main content

Detection of Integrated Herpesvirus Genomes by Fluorescence In Situ Hybridization (FISH)

  • Protocol
  • First Online:
Virus-Host Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1064))

Abstract

Fluorescence in situ hybridization (FISH) is widely used to visualize nucleotide sequences in interphase cells or on metaphase chromosomes using specific probes that are complementary to the respective targets. Besides its broad application in cytogenetics and cancer research, FISH facilitates the localization of virus genomes in infected cells. Some herpesviruses, including human herpesvirus 6 (HHV-6) and Marek’s disease virus (MDV), have been shown to integrate their genetic material into host chromosomes, which allows transmission of HHV-6 via the germ line and is required for efficient MDV-induced tumor formation. We describe here the detection by FISH of integrated herpesvirus genomes in metaphase chromosomes and interphase nuclei of herpesvirus-infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trask BJ (1991) Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet 7(5):149–154

    Article  CAS  PubMed  Google Scholar 

  2. Wiegant J, Ried T, Nederlof PM et al (1991) In situ hybridization with fluoresceinated DNA. Nucleic Acids Res 19(12):3237–3241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hackstein H, Jahn G, Kirchner H et al (1996) Fluorescence in situ hybridization with cosmid clones for the detection of human cytomegalovirus DNA in peripheral blood leukocytes. Histochem Cell Biol 106(2):229–234

    Article  CAS  PubMed  Google Scholar 

  4. Lawrence JB, Marselle LM, Byron KS et al (1990) Subcellular localization of low-abundance human immunodeficiency virus nucleic acid sequences visualized by fluorescence in situ hybridization. Proc Natl Acad Sci USA 87(14):5420–5424

    Article  CAS  PubMed  Google Scholar 

  5. Reisinger J, Rumpler S, Lion T et al (2006) Visualization of episomal and integrated Epstein-Barr virus DNA by fiber fluorescence in situ hybridization. Int J Cancer 118(7):1603–1608

    Article  CAS  PubMed  Google Scholar 

  6. Brabec-Zaruba M, Pfanzagl B, Blaas D et al (2009) Site of human rhinovirus RNA uncoating revealed by fluorescent in situ hybridization. J Virol 83(8):3770–3777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Robertson KL, Verhoeven AB, Thach DC et al (2010) Monitoring viral RNA in infected cells with LNA flow-FISH. RNA 16(8):1679–1685

    Article  CAS  PubMed  Google Scholar 

  8. Hall CB, Caserta MT, Schnabel K et al (2008) Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatrics 122(3):513–520

    Article  PubMed  Google Scholar 

  9. Li M, Mizuuchi M, Burke TR Jr et al (2006) Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J 25(6):1295–1304

    Article  CAS  PubMed  Google Scholar 

  10. Delecluse HJ, Hammerschmidt W (1993) Status of Marek’s disease virus in established lymphoma cell lines: herpesvirus integration is common. J Virol 67(1):82–92

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Luppi M, Barozzi P, Marasca R et al (1994) Integration of human herpesvirus-6 (HHV-6) genome in chromosome 17 in two lymphoma patients. Leukemia 8(Suppl 1):S41–S45

    PubMed  Google Scholar 

  12. Luppi M, Marasca R, Barozzi P et al (1993) Three cases of human herpesvirus-6 latent infection: integration of viral genome in peripheral blood mononuclear cell DNA. J Med Virol 40(1):44–52

    Article  CAS  PubMed  Google Scholar 

  13. Kaufer BB, Jarosinski KW, Osterrieder N (2011) Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J Exp Med 208(3):605–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Arbuckle JH, Medveczky MM, Luka J et al (2010) The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci USA 107(12):5563–5568

    Article  CAS  PubMed  Google Scholar 

  15. Delecluse HJ, Schuller S, Hammerschmidt W (1993) Latent Marek’s disease virus can be activated from its chromosomally integrated state in herpesvirus-transformed lymphoma cells. EMBO J 12(8):3277–3286

    CAS  PubMed  Google Scholar 

  16. Calnek BW, Shek WR, Schat KA (1981) Spontaneous and induced herpesvirus genome expression in Marek’s disease tumor cell lines. Infect Immun 34(2):483–491

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Henegariu O, Heerema NA, Lowe WL et al (2001) Improvements in cytogenetic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry 43(2):101–109

    Article  CAS  PubMed  Google Scholar 

  18. Satya-Prakash KL, Liang JC, Hsu TC et al (1986) Chromosome aberrations in mouse bone marrow cells following treatment in vivo with vinblastine and Colcemid. Environ Mutagen 8(2):273–282

    Article  CAS  PubMed  Google Scholar 

  19. Morrison LE, Ramakrishnan R, Ruffalo TM et al (2002) Labeling fluorescence in situ hybridization probes for genomic targets. Methods Mol Biol 204:21–40

    CAS  PubMed  Google Scholar 

  20. Rens W, Fu B, O’Brien PC et al (2006) Cross-species chromosome painting. Nat Protoc 1(2):783–790

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Nikolaus Osterrieder for editing the manuscript. This work was supported by the DFG grant KA3492.1-1 and funding from the Freie Universität Berlin to B.B.K.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kaufer, B.B. (2013). Detection of Integrated Herpesvirus Genomes by Fluorescence In Situ Hybridization (FISH). In: Bailer, S., Lieber, D. (eds) Virus-Host Interactions. Methods in Molecular Biology, vol 1064. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-601-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-601-6_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-600-9

  • Online ISBN: 978-1-62703-601-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics