Skip to main content

Chemo-Enzymatic Production of O-Glycopeptides for the Detection of Serum Glycopeptide Antibodies

  • Protocol
  • First Online:
Immunoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1061))

Abstract

Protein microarray is a highly sensitive tool for antibody detection in serum. Monitoring of patients’ antibody titers to specific antigens is increasingly employed in the diagnosis of several conditions, ranging from infectious diseases, allergies, autoimmune diseases, and cancer. In this protocol we present a detailed method for enzymatic generation of disease-specific O-glycopeptides and how to monitor the antibody response to these in serum using microarray technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kingsmore SF (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 5:310–320

    Article  PubMed  CAS  Google Scholar 

  2. Robinson WH (2006) Antigen arrays for antibody profiling. Curr Opin Chem Biol 10:67–72

    Article  PubMed  CAS  Google Scholar 

  3. Chevaliez S, Pawlotsky JM (2008) Diagnosis and management of chronic viral hepatitis: antigens, antibodies and viral genomes. Best Pract Res Clin Gastroenterol 22:1031–1048

    Article  PubMed  CAS  Google Scholar 

  4. Murdoch DR, O'Brien KL, Driscoll AJ, Karron RA, Bhat N (2012) Laboratory methods for determining pneumonia etiology in children. Clin Infect Dis 54(Suppl 2):S146–S152

    Article  PubMed  Google Scholar 

  5. Fall BI, Eberlein-Konig B, Behrendt H, Niessner R, Ring J, Weller MG (2003) Microarrays for the screening of allergen-specific IgE in human serum. Anal Chem 75:556–562

    Article  PubMed  CAS  Google Scholar 

  6. Ferrer M, Sanz ML, Sastre J, Bartra J, del Cuvillo A, Montoro J, Jauregui I, Davila I, Mullol J, Valero A (2009) Molecular diagnosis in allergology: application of the microarray technique. J Investig Allergol Clin Immunol 19(Suppl 1):19–24

    PubMed  CAS  Google Scholar 

  7. Leslie D, Lipsky P, Notkins AL (2001) Autoantibodies as predictors of disease. J Clin Invest 108:1417–1422

    PubMed  CAS  Google Scholar 

  8. Routsias JG, Tzioufas AG, Moutsopoulos HM (2004) The clinical value of intracellular autoantigens B-cell epitopes in systemic rheumatic diseases. Clin Chim Acta 340:1–25

    Article  PubMed  CAS  Google Scholar 

  9. Tainsky MA (2009) Genomic and proteomic biomarkers for cancer: a multitude of opportunities. Biochim Biophys Acta 1796:176–193

    PubMed  CAS  Google Scholar 

  10. Anderson KS, LaBaer J (2005) The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 4:1123–1133

    Article  PubMed  CAS  Google Scholar 

  11. Tarp MA, Clausen H (2008) Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim Biophys Acta 1780:546–563

    Article  PubMed  CAS  Google Scholar 

  12. Pedersen JW, Blixt O, Bennett EP, Tarp MA, Dar I, Mandel U, Poulsen SS, Pedersen AE, Rasmussen S, Jess P, Clausen H, Wandall HH (2010) Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer 128(8):1860–1871

    Article  Google Scholar 

  13. Wandall HH, Blixt O, Tarp MA, Pedersen JW, Bennett EP, Mandel U, Ragupathi G, Livingston PO, Hollingsworth MA, Taylor-Papadimitriou J, Burchell J, Clausen H (2010) Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res 70:1306–1313

    Article  PubMed  CAS  Google Scholar 

  14. Clo E, Kracun SK, Nudelman AS, Jensen KJ, Liljeqvist JA, Olofsson S, Bergstrom T, Blixt O (2012) Characterization of the viral O-glycopeptidome: a novel tool of relevance for vaccine design and serodiagnosis. J Virol 86:6268–6278

    Article  PubMed  CAS  Google Scholar 

  15. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A 92:11810–11813

    Article  PubMed  CAS  Google Scholar 

  16. Pereira-Faca SR, Kuick R, Puravs E, Zhang Q, Krasnoselsky AL, Phanstiel D, Qiu J, Misek DE, Hinderer R, Tammemagi M, Landi MT, Caporaso N, Pfeiffer R, Edelstein C, Goodman G, Barnett M, Thornquist M, Brenner D, Hanash SM (2007) Identification of 14-3-3 theta as an antigen that induces a humoral response in lung cancer. Cancer Res 67:12000–12006

    Article  PubMed  CAS  Google Scholar 

  17. Stockert E, Jager E, Chen YT, Scanlan MJ, Gout I, Karbach J, Arand M, Knuth A, Old LJ (1998) A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 187:1349–1354

    Article  PubMed  CAS  Google Scholar 

  18. Mintz PJ, Kim J, Do KA, Wang X, Zinner RG, Cristofanilli M, Arap MA, Hong WK, Troncoso P, Logothetis CJ, Pasqualini R, Arap W (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 21:57–63

    Article  PubMed  CAS  Google Scholar 

  19. Anderson KS, Ramachandran N, Wong J, Raphael JV, Hainsworth E, Demirkan G, Cramer D, Aronzon D, Hodi FS, Harris L, Logvinenko T, LaBaer J (2008) Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J Proteome Res 7:1490–1499

    Article  PubMed  CAS  Google Scholar 

  20. Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J (2004) Self-assembling protein microarrays. Science 305:86–90

    Article  PubMed  CAS  Google Scholar 

  21. Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC, Schreiber H (2006) A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314:304–308

    Article  PubMed  CAS  Google Scholar 

  22. Chui D, Sellakumar G, Green R, Sutton-Smith M, McQuistan T, Marek K, Morris H, Dell A, Marth J (2001) Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc Natl Acad Sci U S A 98:1142–1147

    Article  PubMed  CAS  Google Scholar 

  23. Opdenakker G, Dillen C, Fiten P, Martens E, Van Aelst I, Van den Steen PE, Nelissen I, Starckx S, Descamps FJ, Hu J, Piccard H, Van Damme J, Wormald MR, Rudd PM, Dwek RA (2006) Remnant epitopes, autoimmunity and glycosylation. Biochim Biophys Acta 1760:610–615

    Article  PubMed  CAS  Google Scholar 

  24. Axford JS, Sumar N, Alavi A, Isenberg DA, Young A, Bodman KB, Roitt IM (1992) Changes in normal glycosylation mechanisms in autoimmune rheumatic disease. J Clin Invest 89:1021–1031

    Article  PubMed  CAS  Google Scholar 

  25. Delves PJ (1998) The role of glycosylation in autoimmune disease. Autoimmunity 27:239–253

    Article  PubMed  CAS  Google Scholar 

  26. Olofsson S, Blomberg J (1977) Studies on glycopeptides of Herpes simplex virus infected cells. Arch Virol 55:293–304

    Article  PubMed  CAS  Google Scholar 

  27. Brennan PJ, Steiner SM, Courtney RJ, Skelly J (1976) Metabolism of galactose in herpes simplex virus-infected cells. Virology 69:216–228

    Article  PubMed  CAS  Google Scholar 

  28. Taylor-Papadimitriou J, Burchell JM, Plunkett T, Graham R, Correa I, Miles D, Smith M (2002) MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia 7:209–221

    Article  PubMed  Google Scholar 

  29. Rughetti A, Pellicciotta I, Biffoni M, Backstrom M, Link T, Bennet EP, Clausen H, Noll T, Hansson GC, Burchell JM, Frati L, Taylor-Papadimitriou J, Nuti M (2005) Recombinant tumor-associated MUC1 glycoprotein impairs the differentiation and function of dendritic cells. J Immunol 174:7764–7772

    PubMed  CAS  Google Scholar 

  30. Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H (1997) Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 272:23503–23514

    Article  PubMed  CAS  Google Scholar 

  31. Bennett EP, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell J, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG, Eiberg H, Steffensen R, Clausen H (1998) Cloning of a human UDP-N-acetyl-alpha-D-Galactosamine:polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 273:30472–30481

    Article  PubMed  CAS  Google Scholar 

  32. Ikehara Y, Kojima N, Kurosawa N, Kudo T, Kono M, Nishihara S, Issiki S, Morozumi K, Itzkowitz S, Tsuda T, Nishimura SI, Tsuji S, Narimatsu H (1999) Cloning and expression of a human gene encoding an N-acetylgalactosamine-alpha2,6-sialyltransferase (ST6GalNAc I): a candidate for synthesis of cancer-associated sialyl-Tn antigens. Glycobiology 9:1213–1224

    Article  PubMed  CAS  Google Scholar 

  33. Iwai T, Inaba N, Naundorf A, Zhang Y, Gotoh M, Iwasaki H, Kudo T, Togayachi A, Ishizuka Y, Nakanishi H, Narimatsu H (2002) Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J Biol Chem 277:12802–12809

    Article  PubMed  CAS  Google Scholar 

  34. Mirgorodskaya E, Hassan H, Wandall HH, Clausen H, Roepstorff P (1999) Partial vapor-phase hydrolysis of peptide bonds: a method for mass spectrometric determination of O-glycosylated sites in glycopeptides. Anal Biochem 269:54–65

    Article  PubMed  CAS  Google Scholar 

  35. Pedersen JW, Bennett EP, Schjoldager KT, Meldal M, Holmer AP, Blixt O, Clo E, Levery SB, Clausen H, Wandall HH (2011) Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J Biol Chem 286:32684–32696

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nøstdal, A., Wandall, H.H. (2013). Chemo-Enzymatic Production of O-Glycopeptides for the Detection of Serum Glycopeptide Antibodies. In: Fulton, K., Twine, S. (eds) Immunoproteomics. Methods in Molecular Biology, vol 1061. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-589-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-589-7_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-588-0

  • Online ISBN: 978-1-62703-589-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics