Skip to main content

Polyclonal and Monoclonal Antibodies in Clinic

  • Protocol
  • First Online:
Human Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1060))

Abstract

Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behring E, Kitasato S (1890) Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch Med Wochenschr 16:1113–1114

    Article  Google Scholar 

  2. Hallauer C (1954) Emil von Behring, the man and his work. Schweiz Z Pathol Bakteriol 17:392–399

    CAS  PubMed  Google Scholar 

  3. Bochalli R (1956) Alfred Nobel and the German Nobel prize winners for physiology and medicine. Med Monatsschr 10:44–45

    CAS  PubMed  Google Scholar 

  4. Lejeune F (1951) German Nobel Prize winners. Med Welt 20:429–435

    CAS  PubMed  Google Scholar 

  5. Nicolle C, Conseil E (1918) Pouvoir préventif du sérum d’un malade convalescent de rougeole. Bull Mem Soc Med Hop Paris 42:337

    Google Scholar 

  6. Degkwitz R (1920) Über Versuche mit Masernrekonvaleszentenserum. Ztschr f Kinderh 25:134

    Article  Google Scholar 

  7. Rezaei N, Abolhassani H, Aghamohammadi A, Ochs HD (2011) Indications and safety of intravenous and subcutaneous immunoglobulin therapy. Expert Rev Clin Immunol 7:301–316

    Article  CAS  PubMed  Google Scholar 

  8. Mc KC (1937) The prevention and modification of measles. JAMA 109:2034–2038

    Article  Google Scholar 

  9. Eibl MM (2008) History of immunoglobulin replacement. Immunol Allergy Clin North Am 28:737–764, viii

    Article  PubMed  Google Scholar 

  10. Bruton OC (1952) Agammaglobulinemia. Pediatrics 9:722–728

    Article  CAS  PubMed  Google Scholar 

  11. Barandun S, Kistler P, Jeunet F, Isliker H (1962) Intravenous administration of human gamma-globulin. Vox Sang 7:157–174

    Article  CAS  PubMed  Google Scholar 

  12. Orange JS, Hossny EM, Weiler CR, Ballow M, Berger M, Bonilla FA, Buckley R, Chinen J, El-Gamal Y, Mazer BD, Nelson RP Jr, Patel DD, Secord E, Sorensen RU, Wasserman RL, Cunningham-Rundles C (2006) Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol 117:S525–S553

    Article  CAS  PubMed  Google Scholar 

  13. Avrameas S (1991) Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’. Immunol Today 12:154–159

    CAS  PubMed  Google Scholar 

  14. Lacroix-Desmazes S, Mouthon L, Coutinho A, Kazatchkine MD (1995) Analysis of the natural human IgG antibody repertoire: life-long stability of reactivities towards self antigens contrasts with age-dependent diversification of reactivities against bacterial antigens. Eur J Immunol 25:2598–2604

    Article  CAS  PubMed  Google Scholar 

  15. Mouthon L, Haury M, Lacroix-Desmazes S, Barreau C, Coutinho A, Kazatchkine MD (1995) Analysis of the normal human IgG antibody repertoire. Evidence that IgG autoantibodies of healthy adults recognize a limited and conserved set of protein antigens in homologous tissues. J Immunol 154:5769–5778

    CAS  PubMed  Google Scholar 

  16. Nobrega A, Haury M, Grandien A, Malanchere E, Sundblad A, Coutinho A (1993) Global analysis of antibody repertoires. II. Evidence for specificity, self-selection and the immunological “homunculus” of antibodies in normal serum. Eur J Immunol 23:2851–2859

    Article  CAS  PubMed  Google Scholar 

  17. Varela F, Andersson A, Dietrich G, Sundblad A, Holmberg D, Kazatchkine M, Coutinho A (1991) Population dynamics of natural antibodies in normal and autoimmune individuals. Proc Natl Acad Sci U S A 88:5917–5921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Varela FJ, Coutinho A (1991) Second generation immune networks. Immunol Today 12:159–166

    Article  CAS  PubMed  Google Scholar 

  19. Gelfand EW (2006) Differences between IGIV products: impact on clinical outcome. Int Immunopharmacol 6:592–599

    Article  CAS  PubMed  Google Scholar 

  20. Lam L, Whitsett CF, McNicholl JM, Hodge TW, Hooper J (1993) Immunologically active proteins in intravenous immunoglobulin. Lancet 342:678

    Article  CAS  PubMed  Google Scholar 

  21. Blasczyk R, Westhoff U, Grosse-Wilde H (1993) Soluble CD4, CD8, and HLA molecules in commercial immunoglobulin preparations. Lancet 341:789–790

    Article  CAS  PubMed  Google Scholar 

  22. Bayry J, Negi VS, Kaveri SV (2011) Intravenous immunoglobulin therapy in rheumatic diseases. Nat Rev Rheumatol 7:349–359

    Article  CAS  PubMed  Google Scholar 

  23. Buchacher A, Iberer G (2006) Purification of intravenous immunoglobulin G from human plasma—aspects of yield and virus safety. Biotechnol J 1:148–163

    Article  CAS  PubMed  Google Scholar 

  24. Imbach P, Barandun S, d’Apuzzo V, Baumgartner C, Hirt A, Morell A, Rossi E, Schoni M, Vest M, Wagner HP (1981) High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1:1228–1231

    Article  CAS  PubMed  Google Scholar 

  25. Fehr J, Hofmann V, Kappeler U (1982) Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high-dose intravenous gamma globulin. N Engl J Med 306:1254–1258

    Article  CAS  PubMed  Google Scholar 

  26. Notarangelo LD (2010) Primary immunodeficiencies. J Allergy Clin Immunol 125:S182–S194

    Article  PubMed  Google Scholar 

  27. Kazatchkine MD, Kaveri SV (2001) Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 345:747–755

    Article  CAS  PubMed  Google Scholar 

  28. Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J (2008) Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol 29:608–615

    Article  CAS  PubMed  Google Scholar 

  29. Luke PP, Scantlebury VP, Jordan ML, Vivas CA, Hakala TR, Jain A, Somani A, Fedorek S, Randhawa P, Shapiro R (2001) Reversal of steroid- and anti-lymphocyte antibody-resistant rejection using intravenous immunoglobulin (IVIG) in renal transplant recipients. Transplantation 72:419–422

    Article  CAS  PubMed  Google Scholar 

  30. Sokos DR, Berger M, Lazarus HM (2002) Intravenous immunoglobulin: appropriate indications and uses in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 8:117–130

    Article  PubMed  Google Scholar 

  31. Casadei DH, del CRM, Opelz G, Golberg JC, Argento JA, Greco G, Guardia OE, Haas E, Raimondi EH (2001) A randomized and prospective study comparing treatment with high-dose intravenous immunoglobulin with monoclonal antibodies for rescue of kidney grafts with steroid-resistant rejection. Transplantation 71:53–58

    Article  CAS  PubMed  Google Scholar 

  32. Newburger JW, Takahashi M, Burns JC, Beiser AS, Chung KJ, Duffy CE, Glode MP, Mason WH, Reddy V, Sanders SP et al (1986) The treatment of Kawasaki syndrome with intravenous gamma globulin. N Engl J Med 315:341–347

    Article  CAS  PubMed  Google Scholar 

  33. Silverman ED, Somma C, Khan MM, Melmon KL, Engleman EG (1990) Abnormal T suppressor cell function in juvenile rheumatoid arthritis. Arthritis Rheum 33:205–211

    Article  CAS  PubMed  Google Scholar 

  34. Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–673

    Article  CAS  PubMed  Google Scholar 

  35. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320:373–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV (2011) Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature 475:110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kasermann F, Boerema DJ, Ruegsegger M, Hofmann A, Wymann S, Zuercher AW, Miescher S (2012) Analysis and functional consequences of increased Fab-sialylation of intravenous immunoglobulin (IVIG) after lectin fractionation. PLoS One 7:e37243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Basta M, Dalakas MC (1994) High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest 94:1729–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Basta M, Langlois PF, Marques M, Frank MM, Fries LF (1989) High-dose intravenous immunoglobulin modifies complement-mediated in vivo clearance. Blood 74:326–333

    Article  CAS  PubMed  Google Scholar 

  40. Basta M, Kirshbom P, Frank MM, Fries LF (1989) Mechanism of therapeutic effect of high-dose intravenous immunoglobulin. Attenuation of acute, complement-dependent immune damage in a guinea pig model. J Clin Invest 84:1974–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sato M, Kojima H, Koshikawa S (1986) Modification of immune complexes deposited in glomeruli in tissue sections treated with sulfonized gamma-globulin. Clin Exp Immunol 64:623–628

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin CY, Hsu HC, Chiang H (1989) Improvement of histological and immunological change in steroid and immunosuppressive drug-resistant lupus nephritis by high-dose intravenous gamma globulin. Nephron 53:303–310

    Article  CAS  PubMed  Google Scholar 

  43. Leung DY, Cotran RS, Kurt-Jones E, Burns JC, Newburger JW, Pober JS (1989) Endothelial cell activation and high interleukin-1 secretion in the pathogenesis of acute Kawasaki disease. Lancet 2:1298–1302

    Article  CAS  PubMed  Google Scholar 

  44. Aukrust P, Froland SS, Liabakk NB, Muller F, Nordoy I, Haug C, Espevik T (1994) Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo. Blood 84:2136–2143

    Article  CAS  PubMed  Google Scholar 

  45. Sharief MK, Ingram DA, Swash M, Thompson EJ (1999) I.v. immunoglobulin reduces circulating proinflammatory cytokines in Guillain-Barre syndrome. Neurology 52:1833–1838

    Article  CAS  PubMed  Google Scholar 

  46. Xu C, Poirier B, Duong Van Huyen JP, Lucchiari N, Michel O, Chevalier J, Kaveri S (1998) Modulation of endothelial cell function by normal polyspecific human intravenous immunoglobulins: a possible mechanism of action in vascular diseases. Am J Pathol 153:1257–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leung DY (1996) Kawasaki syndrome: immunomodulatory benefit and potential toxin neutralization by intravenous immune globulin. Clin Exp Immunol 104(Suppl 1):49–54

    PubMed  Google Scholar 

  48. Ashkenazi S, Cleary TG, Lopez E, Pickering LK (1988) Anticytotoxin-neutralizing antibodies in immune globulin preparations: potential use in hemolytic-uremic syndrome. J Pediatr 113:1008–1014

    Article  CAS  PubMed  Google Scholar 

  49. Leung DY, Kelly CP, Boguniewicz M, Pothoulakis C, LaMont JT, Flores A (1991) Treatment with intravenously administered gamma globulin of chronic relapsing colitis induced by Clostridium difficile toxin. J Pediatr 118:633–637

    Article  CAS  PubMed  Google Scholar 

  50. Abe J, Jibiki T, Noma S, Nakajima T, Saito H, Terai M (2005) Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease. J Immunol 174:5837–5845

    Article  CAS  PubMed  Google Scholar 

  51. Rhoades CJ, Williams MA, Kelsey SM, Newland AC (2000) Monocyte-macrophage system as targets for immunomodulation by intravenous immunoglobulin. Blood Rev 14:14–30

    Article  CAS  PubMed  Google Scholar 

  52. Kimberly RP, Salmon JE, Bussel JB, Crow MK, Hilgartner MW (1984) Modulation of mononuclear phagocyte function by intravenous gamma-globulin. J Immunol 132:745–750

    CAS  PubMed  Google Scholar 

  53. Salama A, Mueller-Eckhardt C, Kiefel V (1983) Effect of intravenous immunoglobulin in immune thrombocytopenia. Lancet 2:193–195

    Article  CAS  PubMed  Google Scholar 

  54. Bussel JB, Kimberly RP, Inman RD, Schulman I, Cunningham-Rundles C, Cheung N, Smithwick EM, O’Malley J, Barandun S, Hilgartner MW (1983) Intravenous gammaglobulin treatment of chronic idiopathic thrombocytopenic purpura. Blood 62:480–486

    Article  CAS  PubMed  Google Scholar 

  55. Debre M, Bonnet MC, Fridman WH, Carosella E, Philippe N, Reinert P, Vilmer E, Kaplan C, Teillaud JL, Griscelli C (1993) Infusion of Fc gamma fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet 342:945–949

    Article  CAS  PubMed  Google Scholar 

  56. Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV (2006) Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med 203:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Mirre E, Teeling JL, van der Meer JW, Bleeker WK, Hack CE (2004) Monomeric IgG in intravenous Ig preparations is a functional antagonist of FcgammaRII and FcgammaRIIIb. J Immunol 173:332–339

    Article  PubMed  Google Scholar 

  58. von Gunten S, Schaub A, Vogel M, Stadler BM, Miescher S, Simon HU (2006) Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations. Blood 108:4255–4259

    Article  CAS  Google Scholar 

  59. Chang J, Shi PA, Chiang EY, Frenette PS (2008) Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion. Blood 111:915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jarius S, Eichhorn P, Albert MH, Wagenpfeil S, Wick M, Belohradsky BH, Hohlfeld R, Jenne DE, Voltz R (2007) Intravenous immunoglobulins contain naturally occurring antibodies that mimic antineutrophil cytoplasmic antibodies and activate neutrophils in a TNFalpha-dependent and Fc-receptor-independent way. Blood 109:4376–4382

    Article  CAS  PubMed  Google Scholar 

  61. Kwak JY, Kwak FM, Ainbinder SW, Ruiz AM, Beer AE (1996) Elevated peripheral blood natural killer cells are effectively downregulated by immunoglobulin G infusion in women with recurrent spontaneous abortions. Am J Reprod Immunol 35:363–369

    Article  CAS  PubMed  Google Scholar 

  62. Daya S, Gunby J, Clark DA (1998) Intravenous immunoglobulin therapy for recurrent spontaneous abortion: a meta-analysis. Am J Reprod Immunol 39:69–76

    Article  CAS  PubMed  Google Scholar 

  63. Hutton B, Sharma R, Fergusson D, Tinmouth A, Hebert P, Jamieson J, Walker M (2007) Use of intravenous immunoglobulin for treatment of recurrent miscarriage: a systematic review. BJOG 114:134–142

    Article  CAS  PubMed  Google Scholar 

  64. Finberg RW, Newburger JW, Mikati MA, Heller AH, Burns JC (1992) Effect of high doses of intravenously administered immune globulin on natural killer cell activity in peripheral blood. J Pediatr 120:376–380

    Article  CAS  PubMed  Google Scholar 

  65. Tha-In T, Metselaar HJ, Tilanus HW, Groothuismink ZM, Kuipers EJ, de Man RA, Kwekkeboom J (2007) Intravenous immunoglobulins suppress T-cell priming by modulating the bidirectional interaction between dendritic cells and natural killer cells. Blood 110:3253–3262

    Article  CAS  PubMed  Google Scholar 

  66. Bayry J, Lacroix-Desmazes S, Carbonneil C, Misra N, Donkova V, Pashov A, Chevailler A, Mouthon L, Weill B, Bruneval P, Kazatchkine MD, Kaveri SV (2003) Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood 101:758–765

    Article  CAS  PubMed  Google Scholar 

  67. Bayry J, Lacroix-Desmazes S, Delignat S, Mouthon L, Weill B, Kazatchkine MD, Kaveri SV (2003) Intravenous immunoglobulin abrogates dendritic cell differentiation induced by interferon-alpha present in serum from patients with systemic lupus erythematosus. Arthritis Rheum 48:3497–3502

    Article  CAS  PubMed  Google Scholar 

  68. Shioji K, Kishimoto C, Sasayama S (2001) Fc receptor-mediated inhibitory effect of immunoglobulin therapy on autoimmune giant cell myocarditis: concomitant suppression of the expression of dendritic cells. Circ Res 89:540–546

    Article  CAS  PubMed  Google Scholar 

  69. Siragam V, Crow AR, Brinc D, Song S, Freedman J, Lazarus AH (2006) Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med 12:688–692

    Article  CAS  PubMed  Google Scholar 

  70. Sultan Y, Kazatchkine MD, Maisonneuve P, Nydegger UE (1984) Anti-idiotypic suppression of autoantibodies to factor VIII (antihaemophilic factor) by high-dose intravenous gammaglobulin. Lancet 2:765–768

    Article  CAS  PubMed  Google Scholar 

  71. Rossi F, Sultan Y, Kazatchkine MD (1988) Anti-idiotypes against autoantibodies and alloantibodies to VIII:C (anti-haemophilic factor) are present in therapeutic polyspecific normal immunoglobulins. Clin Exp Immunol 74:311–316

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rossi F, Jayne DR, Lockwood CM, Kazatchkine MD (1991) Anti-idiotypes against anti-neutrophil cytoplasmic antigen autoantibodies in normal human polyspecific IgG for therapeutic use and in the remission sera of patients with systemic vasculitis. Clin Exp Immunol 83:298–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abedi MR, Hammarstrom L, Broome U, Angelin B, Smith CI, Christensson B (1996) Reduction in serum levels of antimitochondrial (M2) antibodies following immunoglobulin therapy in severe combined immunodeficient (SCID) mice reconstituted with lymphocytes from patients with primary biliary cirrhosis (PBC). Clin Exp Immunol 105:266–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vassilev T, Yamamoto M, Aissaoui A, Bonnin E, Berrih-Aknin S, Kazatchkine MD, Kaveri SV (1999) Normal human immunoglobulin suppresses experimental myasthenia gravis in SCID mice. Eur J Immunol 29:2436–2442

    Article  CAS  PubMed  Google Scholar 

  75. de Grandmont MJ, Racine C, Roy A, Lemieux R, Neron S (2003) Intravenous immunoglobulins induce the in vitro differentiation of human B lymphocytes and the secretion of IgG. Blood 101:3065–3073

    Article  PubMed  CAS  Google Scholar 

  76. Bayry J, Fournier EM, Maddur MS, Vani J, Wootla B, Siberil S, Dimitrov JD, Lacroix-Desmazes S, Berdah M, Crabol Y, Oksenhendler E, Levy Y, Mouthon L, Sautes-Fridman C, Hermine O, Kaveri SV (2011) Intravenous immunoglobulin induces proliferation and immunoglobulin synthesis from B cells of patients with common variable immunodeficiency: a mechanism underlying the beneficial effect of IVIg in primary immunodeficiencies. J Autoimmun 36:9–15

    Article  CAS  PubMed  Google Scholar 

  77. Rigal D, Vermot-Desroches C, Heitz S, Bernaud J, Alfonsi F, Monier JC (1994) Effects of intravenous immunoglobulins (IVIG) on peripheral blood B, NK, and T cell subpopulations in women with recurrent spontaneous abortions: specific effects on LFA-1 and CD56 molecules. Clin Immunol Immunopathol 71:309–314

    Article  CAS  PubMed  Google Scholar 

  78. Tha-In T, Metselaar HJ, Tilanus HW, Boor PP, Mancham S, Kuipers EJ, de Man RA, Kwekkeboom J (2006) Superior immunomodulatory effects of intravenous immunoglobulins on human T-cells and dendritic cells: comparison to calcineurin inhibitors. Transplantation 81:1725–1734

    Article  CAS  PubMed  Google Scholar 

  79. Pashov A, Dubey C, Kaveri SV, Lectard B, Huang YM, Kazatchkine MD, Bellon B (1998) Normal immunoglobulin G protects against experimental allergic encephalomyelitis by inducing transferable T cell unresponsiveness to myelin basic protein. Eur J Immunol 28:1823–1831

    Article  CAS  PubMed  Google Scholar 

  80. Saoudi A, Hurez V, de Kozak Y, Kuhn J, Kaveri SV, Kazatchkine MD, Druet P, Bellon B (1993) Human immunoglobulin preparations for intravenous use prevent experimental autoimmune uveoretinitis. Int Immunol 5:1559–1567

    Article  CAS  PubMed  Google Scholar 

  81. Achiron A, Mor F, Margalit R, Cohen IR, Lider O, Miron S (2000) Suppression of experimental autoimmune encephalomyelitis by intravenously administered polyclonal immunoglobulins. J Autoimmun 15:323–330

    Article  CAS  PubMed  Google Scholar 

  82. Nicoletti A, Kaveri S, Caligiuri G, Bariety J, Hansson GK (1998) Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J Clin Invest 102:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shirin H, Bruck R, Aeed H, Hershkoviz R, Lider O, Kenet G, Avni Y, Halpern Z (1997) Effects of intravenous immunoglobulins on T-cell mediated, concanavalin A-induced hepatitis in mice. Liver 17:275–280

    Article  CAS  PubMed  Google Scholar 

  84. Kessel A, Ammuri H, Peri R, Pavlotzky ER, Blank M, Shoenfeld Y, Toubi E (2007) Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. J Immunol 179:5571–5575

    Article  CAS  PubMed  Google Scholar 

  85. Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, Delignat S, Elluru S, Bayry J, Lacroix-Desmazes S, Cohen JL, Salomon BL, Kazatchkine MD, Kaveri SV, Misra N (2008) Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 111:715–722

    Article  CAS  PubMed  Google Scholar 

  86. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  87. Klinman NR, Segal GP, Gerhard W, Braciale T, Levy R (1977) Obtaining homogeneous antibody of desired specificity from fragment cultures. In: Haber E, Krause RM (eds) Antibodies in human diagnosis and therapy. Raven, New York, pp 225–236

    Google Scholar 

  88. Miller RA, Maloney DG, Warnke R, Levy R (1982) Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 306:517–522

    Article  CAS  PubMed  Google Scholar 

  89. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81:6851–6855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Boulianne GL, Hozumi N, Shulman MJ (1984) Production of functional chimaeric mouse/human antibody. Nature 312:643–646

    Article  CAS  PubMed  Google Scholar 

  91. den Broeder A, van de Putte L, Rau R, Schattenkirchner M, Van Riel P, Sander O, Binder C, Fenner H, Bankmann Y, Velagapudi R, Kempeni J, Kupper H (2002) A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-alpha antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J Rheumatol 29:2288–2298

    Google Scholar 

  92. Rau R (2002) Adalimumab (a fully human anti-tumour necrosis factor alpha monoclonal antibody) in the treatment of active rheumatoid arthritis: the initial results of five trials. Ann Rheum Dis 61(Suppl 2):ii70–ii73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Onrust SV, Lamb HM (1998) Infliximab: a review of its use in Crohn’s disease and rheumatoid arthritis. BioDrugs 10:397–422

    Article  CAS  PubMed  Google Scholar 

  94. Cuchacovich M, Soto L, Edwardes M, Gutierrez M, Llanos C, Pacheco D, Sabugo F, Alamo M, Fuentealba C, Villanueva L, Gatica H, Schiattino I, Salazaro L, Catalan D, Valenzuela O, Salazar-Onfray F, Aguillon JC (2006) Tumour necrosis factor (TNF)alpha-308 G/G promoter polymorphism and TNFalpha levels correlate with a better response to adalimumab in patients with rheumatoid arthritis. Scand J Rheumatol 35:435–440

    Article  CAS  PubMed  Google Scholar 

  95. Danese S, Sans M, Scaldaferri F, Sgambato A, Rutella S, Cittadini A, Pique JM, Panes J, Katz JA, Gasbarrini A, Fiocchi C (2006) TNF-alpha blockade down-regulates the CD40/CD40L pathway in the mucosal microcirculation: a novel anti-inflammatory mechanism of infliximab in Crohn’s disease. J Immunol 176:2617–2624

    Article  CAS  PubMed  Google Scholar 

  96. Kirman I, Whelan RL, Nielsen OH (2004) Infliximab: mechanism of action beyond TNF-alpha neutralization in inflammatory bowel disease. Eur J Gastroenterol Hepatol 16:639–641

    Article  CAS  PubMed  Google Scholar 

  97. Ames SA, Gleeson CD, Kirkpatrick P (2004) Omalizumab. Nat Rev Drug Discov 3:199–200

    Article  CAS  PubMed  Google Scholar 

  98. Bang LM, Plosker GL (2004) Spotlight on omalizumab in allergic asthma. BioDrugs 18:415–418

    Article  PubMed  Google Scholar 

  99. Hennemann A (2004) Omalizumab. A monoclonal antibody against IgE. Med Monatsschr Pharm 27:404–407

    CAS  PubMed  Google Scholar 

  100. Holgate ST, Chuchalin AG, Hebert J, Lotvall J, Persson GB, Chung KF, Bousquet J, Kerstjens HA, Fox H, Thirlwell J, Cioppa GD (2004) Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clin Exp Allergy 34:632–638

    Article  CAS  PubMed  Google Scholar 

  101. Smolen JS, Kay J, Doyle MK, Landewe R, Matteson EL, Wollenhaupt J, Gaylis N, Murphy FT, Neal JS, Zhou Y, Visvanathan S, Hsia EC, Rahman MU (2009) Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor alpha inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. Lancet 374:210–221

    Article  CAS  PubMed  Google Scholar 

  102. Oldfield V, Plosker GL (2009) Golimumab: in the treatment of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. BioDrugs 23:125–135

    Article  CAS  PubMed  Google Scholar 

  103. Kavanaugh A, McInnes I, Mease P, Krueger GG, Gladman D, Gomez-Reino J, Papp K, Zrubek J, Mudivarthy S, Mack M, Visvanathan S, Beutler A (2009) Golimumab, a new human tumor necrosis factor alpha antibody, administered every four weeks as a subcutaneous injection in psoriatic arthritis: twenty-four-week efficacy and safety results of a randomized, placebo-controlled study. Arthritis Rheum 60:976–986

    Article  CAS  PubMed  Google Scholar 

  104. Faulds D, Sorkin EM (1994) Abciximab (c7E3 Fab). A review of its pharmacology and therapeutic potential in ischaemic heart disease. Drugs 48:583–598

    Article  CAS  PubMed  Google Scholar 

  105. Tcheng JE, Kandzari DE, Grines CL, Cox DA, Effron MB, Garcia E, Griffin JJ, Guagliumi G, Stuckey T, Turco M, Fahy M, Lansky AJ, Mehran R, Stone GW (2003) Benefits and risks of Abciximab use in primary angioplasty for acute myocardial infarction: the controlled Abciximab and device investigation to lower late angioplasty complications (CADILLAC) trial. Circulation 108:1316–1323

    Article  CAS  PubMed  Google Scholar 

  106. Schror K, Weber AA (2003) Comparative pharmacology of GP IIb/IIIa antagonists. J Thromb Thrombolysis 15:71–80

    Article  PubMed  Google Scholar 

  107. Weber AA, Schror K (2001) Differential inhibition of adenosine diphosphate- versus thrombin receptor-activating peptide-stimulated platelet fibrinogen binding by abciximab due to different glycoprotein IIb/IIIa activation kinetics. Blood 98:1619–1621

    Article  CAS  PubMed  Google Scholar 

  108. Walsh GM (2009) Canakinumab for the treatment of cryopyrin-associated periodic syndromes. Drugs Today (Barc) 45:731–735

    Article  CAS  Google Scholar 

  109. Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P, Gitton X, Widmer A, Patel N, Hawkins PN (2009) Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 360:2416–2425

    Article  CAS  PubMed  Google Scholar 

  110. Church LD, McDermott MF (2009) Canakinumab, a fully-human mAb against IL-1beta for the potential treatment of inflammatory disorders. Curr Opin Mol Ther 11:81–89

    CAS  PubMed  Google Scholar 

  111. Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369:1641–1657

    Article  CAS  PubMed  Google Scholar 

  112. Stefanelli T, Malesci A, Repici A, Vetrano S, Danese S (2008) New insights into inflammatory bowel disease pathophysiology: paving the way for novel therapeutic targets. Curr Drug Targets 9:413–418

    Article  CAS  PubMed  Google Scholar 

  113. Lalande JD, Behr MA (2010) Mycobacteria in Crohn’s disease: how innate immune deficiency may result in chronic inflammation. Expert Rev Clin Immunol 6:633–641

    Article  CAS  PubMed  Google Scholar 

  114. Brynskov J, Foegh P, Pedersen G, Ellervik C, Kirkegaard T, Bingham A, Saermark T (2002) Tumour necrosis factor alpha converting enzyme (TACE) activity in the colonic mucosa of patients with inflammatory bowel disease. Gut 51:37–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Baker DE (2008) Certolizumab pegol: a polyethylene glycolated Fab′ fragment of humanized anti-tumor necrosis factor alpha monoclonal antibody for the treatment of Crohn’s disease. Rev Gastroenterol Disord 8:240–253

    PubMed  Google Scholar 

  116. Patel VK, Ghosh S (2008) Certolizumab pegol in Crohn’s disease. Drugs Today (Barc) 44:837–844

    Article  CAS  Google Scholar 

  117. Sandborn WJ (2008) Certolizumab pegol for moderate-to-severe Crohn’s disease. Gastroenterol Hepatol (NY) 4:467–468

    Google Scholar 

  118. Danese S, Mocciaro F, Guidi L, Scribano ML, Comberlato M, Annese V, Colombo E, Stefanelli T, Marzo M, Vangeli M, Pulitano R, Manca A, Armuzzi A, Malesci A, Prantera C, Cottone M (2008) Successful induction of clinical response and remission with certolizumab pegol in Crohn’s disease patients refractory or intolerant to infliximab: a real-life multicenter experience of compassionate use. Inflamm Bowel Dis 14:1168–1170

    Article  PubMed  Google Scholar 

  119. Schreiber S (2005) The complicated path to true causes of disease: role of nuclear factor kappaB in inflammatory bowel disease. Gut 54:444–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rosenfeld PJ, Rich RM, Lalwani GA (2006) Ranibizumab: phase III clinical trial results. Ophthalmol Clin North Am 19:361–372

    PubMed  Google Scholar 

  121. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431

    Article  CAS  PubMed  Google Scholar 

  122. Narayanan R, Kuppermann BD, Jones C, Kirkpatrick P (2006) Ranibizumab. Nat Rev Drug Discov 5:815–816

    Article  CAS  PubMed  Google Scholar 

  123. Dugel PU (2006) Ranibizumab treatment of patients with ocular diseases. Int Ophthalmol Clin 46:131–140

    Article  PubMed  Google Scholar 

  124. Subramanian ML, Abedi G, Ness S, Ahmed E, Fenberg M, Daly MK, Houranieh A, Feinberg EB (2010) Bevacizumab vs. ranibizumab for age-related macular degeneration: 1-year outcomes of a prospective, double-masked randomised clinical trial. Eye (Lond) 24:1708–1715

    Article  CAS  Google Scholar 

  125. Wootla B, Eriguchi M, Rodriguez M (2012) Is multiple sclerosis an autoimmune disease? Autoimmune Dis 2012:969657

    PubMed  PubMed Central  Google Scholar 

  126. Bartt RE (2006) Multiple sclerosis, natalizumab therapy, and progressive multifocal leukoencephalopathy. Curr Opin Neurol 19:341–349

    Article  PubMed  Google Scholar 

  127. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Article  CAS  PubMed  Google Scholar 

  128. Ramos-Cejudo J, Oreja-Guevara C, Stark Aroeira L, Rodriguez de Antonio L, Chamorro B, Diez-Tejedor E (2011) Treatment with natalizumab in relapsing-remitting multiple sclerosis patients induces changes in inflammatory mechanism. J Clin Immunol 31:623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rice GP, Hartung HP, Calabresi PA (2005) Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology 64:1336–1342

    Article  CAS  PubMed  Google Scholar 

  130. Linda H, von Heijne A, Major EO, Ryschkewitsch C, Berg J, Olsson T, Martin C (2009) Progressive multifocal leukoencephalopathy after natalizumab monotherapy. N Engl J Med 361:1081–1087

    Article  CAS  PubMed  Google Scholar 

  131. Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, Natarajan A, Lee S, Plavina T, Scanlon JV, Sandrock A, Bozic C (2012) Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 366:1870–1880

    Article  CAS  PubMed  Google Scholar 

  132. Hillmen P, Muus P, Duhrsen U, Risitano AM, Schubert J, Luzzatto L, Schrezenmeier H, Szer J, Brodsky RA, Hill A, Socie G, Bessler M, Rollins SA, Bell L, Rother RP, Young NS (2007) Effect of the complement inhibitor eculizumab on thromboembolism in patients with paroxysmal nocturnal hemoglobinuria. Blood 110:4123–4128

    Article  CAS  PubMed  Google Scholar 

  133. Parker CJ, Kar S, Kirkpatrick P (2007) Eculizumab. Nat Rev Drug Discov 6:515–516

    Article  CAS  PubMed  Google Scholar 

  134. Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L (2007) Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25:1256–1264

    Article  CAS  PubMed  Google Scholar 

  135. Zareba KM (2007) Eculizumab: a novel therapy for paroxysmal nocturnal hemoglobinuria. Drugs Today (Barc) 43:539–546

    Article  CAS  Google Scholar 

  136. Hillmen P, Young NS, Schubert J, Brodsky RA, Socie G, Muus P, Roth A, Szer J, Elebute MO, Nakamura R, Browne P, Risitano AM, Hill A, Schrezenmeier H, Fu CL, Maciejewski J, Rollins SA, Mojcik CF, Rother RP, Luzzatto L (2006) The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 355:1233–1243

    Article  CAS  PubMed  Google Scholar 

  137. Weinberg JM, Saini R, Tutrone WD (2002) Biologic therapy for psoriasis—the first wave: infliximab, etanercept, efalizumab, and alefacept. J Drugs Dermatol 1:303–310

    PubMed  Google Scholar 

  138. Dedrick RL, Walicke P, Garovoy M (2002) Anti-adhesion antibodies efalizumab, a humanized anti-CD11a monoclonal antibody. Transpl Immunol 9:181–186

    Article  CAS  PubMed  Google Scholar 

  139. News (2002) Efalizumab. Anti-CD11a monoclonal antibody–Genentech/Xoma, HU 1124, hu1124, xanelim. Drugs R&D 3:40–43

    Article  Google Scholar 

  140. Berger JR, Houff SA, Major EO (2009) Monoclonal antibodies and progressive multifocal leukoencephalopathy. MAbs 1:583–589

    Article  PubMed  PubMed Central  Google Scholar 

  141. Agarwal SK (2011) Biologic agents in rheumatoid arthritis: an update for managed care professionals. J Manag Care Pharm 17:S14–S18

    Article  PubMed  Google Scholar 

  142. Nakou M, Katsikas G, Sidiropoulos P, Bertsias G, Papadimitraki E, Raptopoulou A, Koutala H, Papadaki HA, Kritikos H, Boumpas DT (2009) Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response. Arthritis Res Ther 11:R131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kishimoto T (2006) Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 8(Suppl 2):S2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Madhok R, Crilly A, Watson J, Capell HA (1993) Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. Ann Rheum Dis 52:232–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yoshizaki K, Nishimoto N, Mihara M, Kishimoto T (1998) Therapy of rheumatoid arthritis by blocking IL-6 signal transduction with a humanized anti-IL-6 receptor antibody. Springer Semin Immunopathol 20:247–259

    Article  CAS  PubMed  Google Scholar 

  146. Dennis GJ (2012) Belimumab: a BLyS-specific inhibitor for the treatment of systemic lupus erythematosus. Clin Pharmacol Ther 91:143–149

    Article  CAS  PubMed  Google Scholar 

  147. Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzova D, Sanchez-Guerrero J, Schwarting A, Merrill JT, Chatham WW, Stohl W, Ginzler EM, Hough DR, Zhong ZJ, Freimuth W, van Vollenhoven RF (2011) A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum 63:3918–3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sanz I, Yasothan U, Kirkpatrick P (2011) Belimumab. Nat Rev Drug Discov 10:335–336

    Article  CAS  PubMed  Google Scholar 

  149. Macris MP, Frazier OH, Lammermeier D, Radovancevic B, Duncan JM (1989) Clinical experience with Muromonab-CD3 monoclonal antibody (OKT3) in heart transplantation. J Heart Transplant 8:281–287

    CAS  PubMed  Google Scholar 

  150. Todd PA, Brogden RN (1989) Muromonab CD3. A review of its pharmacology and therapeutic potential. Drugs 37:871–899

    Article  CAS  PubMed  Google Scholar 

  151. Emmons C, Hunsicker LG (1987) Muromonab-CD3 (Orthoclone OKT3): the first monoclonal antibody approved for therapeutic use. Iowa Med 77:78–82

    CAS  PubMed  Google Scholar 

  152. Midtvedt K, Fauchald P, Lien B, Hartmann A, Albrechtsen D, Bjerkely BL, Leivestad T, Brekke IB (2003) Individualized T cell monitored administration of ATG versus OKT3 in steroid-resistant kidney graft rejection. Clin Transplant 17:69–74

    Article  PubMed  Google Scholar 

  153. Kovarik J, Breidenbach T, Gerbeau C, Korn A, Schmidt AG, Nashan B (1998) Disposition and immunodynamics of basiliximab in liver allograft recipients. Clin Pharmacol Ther 64:66–72

    Article  CAS  PubMed  Google Scholar 

  154. News (1998) Basiliximab approved for use in renal transplant patients. Am J Health Syst Pharm 55:1444–1445

    Google Scholar 

  155. Vincenti F, Nashan B, Light S (1998) Daclizumab: outcome of phase III trials and mechanism of action. Double Therapy and the Triple Therapy Study Groups. Transplant Proc 30:2155–2158

    Article  CAS  PubMed  Google Scholar 

  156. Abramowicz D (1998) Daclizumab to prevent acute rejection in renal transplantation. N Engl J Med 338:1700–1701

    Article  CAS  PubMed  Google Scholar 

  157. Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P, Neylan J, Wilkinson A, Ekberg H, Gaston R, Backman L, Burdick J (1998) Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med 338:161–165

    Article  CAS  PubMed  Google Scholar 

  158. Treish IM (2000) Targeting leukemia cells with gemtuzumab ozogamicin. Cancer Pract 8:254–257

    Article  CAS  PubMed  Google Scholar 

  159. Niculescu-Duvaz I (2000) Technology evaluation: gemtuzumab ozogamicin. Celltech Group. Curr Opin Mol Ther 2:691–696

    CAS  PubMed  Google Scholar 

  160. de Vetten MP, Jansen JH, van der Reijden BA, Berger MS, Zijlmans JM, Lowenberg B (2000) Molecular remission of Philadelphia/bcr-abl-positive acute myeloid leukaemia after treatment with anti-CD33 calicheamicin conjugate (gemtuzumab ozogamicin, CMA-676). Br J Haematol 111:277–279

    PubMed  Google Scholar 

  161. Naito K, Takeshita A, Shigeno K, Nakamura S, Fujisawa S, Shinjo K, Yoshida H, Ohnishi K, Mori M, Terakawa S, Ohno R (2000) Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia 14:1436–1443

    Article  CAS  PubMed  Google Scholar 

  162. News (2000) Gemtuzumab for relapsed acute myeloid leukemia. Med Lett Drugs Ther 42:67–68

    Google Scholar 

  163. Communication (1998) Molecule of the month: trastuzumab. Drug News Perspect 11:305

    Google Scholar 

  164. Communication (1998) Trastuzumab and capecitabine for metastatic breast cancer. Med Lett Drugs Ther 40:106–108

    Google Scholar 

  165. Mir O, Berveiller P, Pons G (2007) Trastuzumab—mechanism of action and use. N Engl J Med 357:1664–1665, author reply 1665–1666

    Article  CAS  PubMed  Google Scholar 

  166. Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG (2007) Trastuzumab—mechanism of action and use. N Engl J Med 357:1664, author reply 1665–1666

    Article  CAS  PubMed  Google Scholar 

  167. Hudis CA (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    Article  CAS  PubMed  Google Scholar 

  168. Valabrega G, Montemurro F, Aglietta M (2007) Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol 18:977–984

    Article  CAS  PubMed  Google Scholar 

  169. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA (1999) Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 26:60–70

    CAS  PubMed  Google Scholar 

  170. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  PubMed  Google Scholar 

  171. Ferrajoli A, O’Brien S, Keating MJ (2001) Alemtuzumab: a novel monoclonal antibody. Expert Opin Biol Ther 1:1059–1065

    Article  CAS  PubMed  Google Scholar 

  172. Smith JA (2001) Alemtuzumab: a new option for refractory chronic lymphocytic leukemia? Cancer Pract 9:211–213

    Article  CAS  PubMed  Google Scholar 

  173. Castillo J, Milani C, Mendez-Allwood D (2009) Ofatumumab, a second-generation anti-CD20 monoclonal antibody, for the treatment of lymphoproliferative and autoimmune disorders. Expert Opin Investig Drugs 18:491–500

    Article  CAS  PubMed  Google Scholar 

  174. Traynor K (2009) Ofatumumab approved for advanced CLL. Am J Health Syst Pharm 66:2062

    PubMed  Google Scholar 

  175. Zhang B (2009) Ofatumumab. MAbs 1:326–331

    Article  PubMed  PubMed Central  Google Scholar 

  176. Du J, Yang H, Guo Y, Ding J (2009) Structure of the Fab fragment of therapeutic antibody Ofatumumab provides insights into the recognition mechanism with CD20. Mol Immunol 46:2419–2423

    Article  CAS  PubMed  Google Scholar 

  177. Mone AP, Cheney C, Banks AL, Tridandapani S, Mehter N, Guster S, Lin T, Eisenbeis CF, Young DC, Byrd JC (2006) Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism. Leukemia 20:272–279

    Article  CAS  PubMed  Google Scholar 

  178. Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59:21–26

    Article  CAS  PubMed  Google Scholar 

  179. Chu E (2006) Panitumumab: a new anti-EGFR antibody for the treatment of advanced colorectal cancer. Clin Colorectal Cancer 6:13

    Article  PubMed  Google Scholar 

  180. Hoy SM, Wagstaff AJ (2006) Panitumumab: in the treatment of metastatic colorectal cancer. Drugs 66:2005–2014, discussion 2015-2006

    Article  CAS  PubMed  Google Scholar 

  181. Saltz L, Easley C, Kirkpatrick P (2006) Panitumumab. Nat Rev Drug Discov 5:987–988

    Article  CAS  PubMed  Google Scholar 

  182. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  CAS  PubMed  Google Scholar 

  183. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Fanale MA, Forero-Torres A, Rosenblatt JD, Advani RH, Franklin AR, Kennedy DA, Han TH, Sievers EL, Bartlett NL (2012) A phase I weekly dosing study of brentuximab vedotin in patients with relapsed/refractory CD30-positive hematologic malignancies. Clin Cancer Res 18:248–255

    Article  CAS  PubMed  Google Scholar 

  185. Foyil KV, Bartlett NL (2011) Brentuximab vedotin for the treatment of CD30+ lymphomas. Immunotherapy 3:475–485

    Article  CAS  PubMed  Google Scholar 

  186. Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, Foon KA, Liles TM, Dallaire BK, Wey K, Royston I, Davis T, Levy R (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90:2188–2195

    Article  CAS  PubMed  Google Scholar 

  187. Anderson DR, Grillo-Lopez A, Varns C, Chambers KS, Hanna N (1997) Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin’s B-cell lymphoma. Biochem Soc Trans 25:705–708

    Article  CAS  PubMed  Google Scholar 

  188. Gibson AD (2002) Updated results of a Phase III trial comparing ibritumomab tiuxetan with rituximab in previously treated patients with non-Hodgkin’s lymphoma. Clin Lymphoma 3:87–89

    Article  PubMed  Google Scholar 

  189. Wiseman GA, Gordon LI, Multani PS, Witzig TE, Spies S, Bartlett NL, Schilder RJ, Murray JL, Saleh M, Allen RS, Grillo-Lopez AJ, White CA (2002) Ibritumomab tiuxetan radioimmunotherapy for patients with relapsed or refractory non-Hodgkin lymphoma and mild thrombocytopenia: a phase II multicenter trial. Blood 99:4336–4342

    Article  CAS  PubMed  Google Scholar 

  190. Zelenetz AD (2003) A clinical and scientific overview of tositumomab and iodine I 131 tositumomab. Semin Oncol 30:22–30

    Article  CAS  PubMed  Google Scholar 

  191. Press OW, Unger JM, Braziel RM, Maloney DG, Miller TP, LeBlanc M, Gaynor ER, Rivkin SE, Fisher RI (2003) A phase 2 trial of CHOP chemotherapy followed by tositumomab/iodine I 131 tositumomab for previously untreated follicular non-Hodgkin lymphoma: Southwest Oncology Group Protocol S9911. Blood 102:1606–1612

    Article  CAS  PubMed  Google Scholar 

  192. News (2003) Iodine-131 Tositumomab: (131)I-anti-B1 antibody, (131)I-tositumomab, anti-CD20 murine monoclonal antibody-I-131, B1, Bexxar, (131)I-anti-B1 antibody, iodine-131 tositumomab, iodine-131 anti-B1 antibody, tositumomab. BioDrugs 17:290–295

    Article  Google Scholar 

  193. News (2003) Iodine-131 tositumomab (bexxar) for treatment of lymphoma. Med Lett Drugs Ther 45:86–87

    Google Scholar 

  194. Hersh EM, O’Day SJ, Powderly J, Khan KD, Pavlick AC, Cranmer LD, Samlowski WE, Nichol GM, Yellin MJ, Weber JS (2011) A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naive patients with advanced melanoma. Invest New Drugs 29:489–498

    Article  CAS  PubMed  Google Scholar 

  195. Robert C, Thomas L, Bondarenko I, O’Day S, JW MD, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH Jr, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  CAS  PubMed  Google Scholar 

  196. Robert C, Ghiringhelli F (2009) What is the role of cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma? Oncologist 14:848–861

    Article  CAS  PubMed  Google Scholar 

  197. Baron R, Ferrari S, Russell RG (2011) Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 48:677–692

    Article  CAS  PubMed  Google Scholar 

  198. Iqbal J, Sun L, Zaidi M (2010) Denosumab for the treatment of osteoporosis. Curr Osteoporos Rep 8:163–167

    Article  PubMed  Google Scholar 

  199. Lewiecki EM (2010) Denosumab—an emerging treatment for postmenopausal osteoporosis. Expert Opin Biol Ther 10:467–476

    Article  CAS  PubMed  Google Scholar 

  200. Rizzoli R, Yasothan U, Kirkpatrick P (2010) Denosumab. Nat Rev Drug Discov 9:591–592

    Article  CAS  PubMed  Google Scholar 

  201. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, Peacock M, Miller PD, Lederman SN, Chesnut CH, Lain D, Kivitz AJ, Holloway DL, Zhang C, Peterson MC, Bekker PJ (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831

    Article  CAS  PubMed  Google Scholar 

  202. Lei S, Shiying Y (2012) Efficacy and safety of denosumab versus zoledronic acid in patients with bone metastases: a systematic review and meta-analysis. Am J Clin Oncol 2012 Oct 8. [Epub ahead of print]

    Google Scholar 

  203. Guideline P (1998) Prevention of respiratory syncytial virus infections: indications for the use of palivizumab and update on the use of RSV-IGIV. American Academy of Pediatrics Committee on Infectious Diseases and Committee of Fetus and Newborn. Pediatrics 102:1211–1216

    Article  Google Scholar 

  204. Trial C (1998) Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatrics 102:531–537

    Article  Google Scholar 

  205. Shadman KA, Wald ER (2011) A review of palivizumab and emerging therapies for respiratory syncytial virus. Expert Opin Biol Ther 11:1455–1467

    Article  CAS  PubMed  Google Scholar 

  206. Warrington AE, Asakura K, Bieber AJ, Ciric B, Van Keulen V, Kaveri SV, Kyle RA, Pease LR, Rodriguez M (2000) Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A 97:6820–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mitsunaga Y, Ciric B, Van Keulen V, Warrington AE, Paz Soldan M, Bieber AJ, Rodriguez M, Pease LR (2002) Direct evidence that a human antibody derived from patient serum can promote myelin repair in a mouse model of chronic-progressive demyelinating disease. FASEB J 16:1325–1327

    Article  CAS  PubMed  Google Scholar 

  208. Warrington AE, Bieber AJ, Ciric B, Pease LR, Van Keulen V, Rodriguez M (2007) A recombinant human IgM promotes myelin repair after a single, very low dose. J Neurosci Res 85:967–976

    Article  CAS  PubMed  Google Scholar 

  209. Warrington AE, Bieber AJ, Van Keulen V, Ciric B, Pease LR, Rodriguez M (2004) Neuron-binding human monoclonal antibodies support central nervous system neurite extension. J Neuropathol Exp Neurol 63:461–473

    Article  CAS  PubMed  Google Scholar 

  210. Van Keulen VP, Ciric B, Radhakrishnan S, Heckman KL, Mitsunaga Y, Iijima K, Kita H, Rodriguez M, Pease LR (2006) Immunomodulation using the recombinant monoclonal human B7-DC cross-linking antibody rHIgM12. Clin Exp Immunol 143:314–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Xu X, Warrington AE, Wright BR, Bieber AJ, Van Keulen V, Pease LR, Rodriguez M (2011) A human IgM signals axon outgrowth: coupling lipid raft to microtubules. J Neurochem 119:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Denic A, Macura SI, Warrington AE, Pirko I, Grossardt BR, Pease LR, Rodriguez M (2011) A single dose of neuron-binding human monoclonal antibody improves spontaneous activity in a murine model of demyelination. PLoS One 6:e26001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Watzlawik J, Holicky E, Edberg DD, Marks DL, Warrington AE, Wright BR, Pagano RE, Rodriguez M (2010) Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 58:1782–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wright BR, Warrington AE, Edberg DD, Rodriguez M (2009) Cellular mechanisms of central nervous system repair by natural autoreactive monoclonal antibodies. Arch Neurol 66:1456–1459

    Article  PubMed  PubMed Central  Google Scholar 

  215. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078

    Article  CAS  PubMed  Google Scholar 

  216. Rieben R, Roos A, Muizert Y, Tinguely C, Gerritsen AF, Daha MR (1999) Immunoglobulin M-enriched human intravenous immunoglobulin prevents complement activation in vitro and in vivo in a rat model of acute inflammation. Blood 93:942–951

    Article  CAS  PubMed  Google Scholar 

  217. Walpen AJ, Laumonier T, Aebi C, Mohacsi PJ, Rieben R (2004) Immunoglobulin M-enriched intravenous immunoglobulin inhibits classical pathway complement activation, but not bactericidal activity of human serum. Xenotransplantation 11:141–148

    Article  PubMed  Google Scholar 

  218. Stehr SN, Knels L, Weissflog C, Schober J, Haufe D, Lupp A, Koch T, Heller AR (2008) Effects of IGM-enriched solution on polymorphonuclear neutrophil function, bacterial clearance, and lung histology in endotoxemia. Shock 29:167–172

    Article  PubMed  Google Scholar 

  219. Bieber AJ, Warrington A, Asakura K, Ciric B, Kaveri SV, Pease LR, Rodriguez M (2002) Human antibodies accelerate the rate of remyelination following lysolecithin-induced demyelination in mice. Glia 37:241–249

    Article  PubMed  Google Scholar 

  220. Hurez V, Kazatchkine MD, Vassilev T, Ramanathan S, Pashov A, Basuyaux B, de Kozak Y, Bellon B, Kaveri SV (1997) Pooled normal human polyspecific IgM contains neutralizing anti-idiotypes to IgG autoantibodies of autoimmune patients and protects from experimental autoimmune disease. Blood 90:4004–4013

    Article  CAS  PubMed  Google Scholar 

  221. Varambally S, Bar-Dayan Y, Bayry J, Lacroix-Desmazes S, Horn M, Sorel M, Bar-Dayan Y, Ruberti G, Kazatchkine MD, Kaveri SV (2004) Natural human polyreactive IgM induce apoptosis of lymphoid cell lines and human peripheral blood mononuclear cells. Int Immunol 16:517–524

    Article  CAS  PubMed  Google Scholar 

  222. Vassilev T, Mihaylova N, Voynova E, Nikolova M, Kazatchkine M, Kaveri S (2006) IgM-enriched human intravenous immunoglobulin suppresses T lymphocyte functions in vitro and delays the activation of T lymphocytes in hu-SCID mice. Clin Exp Immunol 145:108–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Bregenholt S, Jensen A, Lantto J, Hyldig S, Haurum JS (2006) Recombinant human polyclonal antibodies: a new class of therapeutic antibodies against viral infections. Curr Pharm Des 12:2007–2015

    Article  CAS  PubMed  Google Scholar 

  224. Frandsen TP, Naested H, Rasmussen SK, Hauptig P, Wiberg FC, Rasmussen LK, Jensen AM, Persson P, Wiken M, Engstrom A, Jiang Y, Thorpe SJ, Forberg C, Tolstrup AB (2011) Consistent manufacturing and quality control of a highly complex recombinant polyclonal antibody product for human therapeutic use. Biotechnol Bioeng 108:2171–2181

    Article  CAS  PubMed  Google Scholar 

  225. Koefoed K, Steinaa L, Soderberg JN, Kjaer I, Jacobsen HJ, Meijer PJ, Haurum JS, Jensen A, Kragh M, Andersen PS, Pedersen MW (2011) Rational identification of an optimal antibody mixture for targeting the epidermal growth factor receptor. MAbs 3:584–595

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Financial Support and Acknowledgments

This work was supported by grants from the National Institutes of Health (R01s—GM092993, NS024180, NS032129, NS048357, R21—NS073684), the National Multiple Sclerosis Society (NMSS, CA1060A11), the Applebaum, Hilton and Peterson Foundations, the Minnesota Partnership for Biotechnology and Medical Genomics, and the European Regional Development Fund—Project FNUSA-ICRC (No.CZ.1.05/1.1.00/02.0123). We thank the McNeilus Family. We gratefully acknowledge the Mayo Clinic Center for Translational Science Activities (CTSA) for supporting this project through a High Impact Pilot and Feasibility Award (HIPFA) and a Novel Methodology and Development Award (NMDA). BW and AD are supported through funds from NMSS (CA1060A11) and NINDS R21 NS073684 Clinical Translation award, respectively. The authors gratefully thank Lea C. Dacy for editorial assistance through helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wootla, B., Denic, A., Rodriguez, M. (2014). Polyclonal and Monoclonal Antibodies in Clinic. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1060. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-62703-586-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-586-6_5

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-62703-585-9

  • Online ISBN: 978-1-62703-586-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics