Skip to main content

Bioinformatic Tools in Arabidopsis Research

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1062))

Abstract

Bioinformatic tools are an increasingly important resource for Arabidopsis researchers. With them, it is possible to rapidly query the large data sets covering genomes, transcriptomes, proteomes, epigenomes, and other “omes” that have been generated in the past decade. Often these tools can be used to generate quality hypotheses at the click of a mouse. In this chapter, we cover the use of bioinformatic tools for examining gene expression and coexpression patterns, performing promoter analyses, looking for functional classification enrichment for sets of genes, and investigating protein–protein interactions. We also introduce bioinformatic tools that allow integration of data from several sources for improved hypothesis generation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chory J et al (2000) National Science Foundation-sponsored workshop report: “The 2010 Project” functional genomics and the virtual plant. A blueprint for understanding how plants are built and how to improve them. Plant Physiol 123:423–426

    Article  PubMed  CAS  Google Scholar 

  2. Alonso JM et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  3. Rhee S et al (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224

    Article  PubMed  CAS  Google Scholar 

  4. Finkelstein RR, Somerville CR (1990) Three classes of abscisic acid (ABA)—insensitive mutations of arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol 94:1172

    Article  PubMed  CAS  Google Scholar 

  5. Brady S, Provart N (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21:1034

    Article  PubMed  CAS  Google Scholar 

  6. Usadel B et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32:1633–1651

    Article  PubMed  CAS  Google Scholar 

  7. Winter D et al (2007) An ‘Electronic Fluorescent Pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718

    Article  PubMed  Google Scholar 

  8. Hruz T et al (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 420747

    Google Scholar 

  9. O’Connor TR, Dyreson C, Wyrick JJ (2005) Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21:4411–4413

    Article  PubMed  Google Scholar 

  10. Obayashi T et al (2011) ATTED-II updates: condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants. Plant Cell Physiol 52:213–219

    Article  PubMed  CAS  Google Scholar 

  11. Toufighi K et al (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  PubMed  CAS  Google Scholar 

  12. Du Z et al (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  PubMed  CAS  Google Scholar 

  13. Carbon S et al (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289

    Article  PubMed  CAS  Google Scholar 

  14. Provart N, Zhu T (2003) A browser-based functional classification SuperViewer for Arabidopsis genomics. Curr Comput Mol Biol 2003:271–272

    Google Scholar 

  15. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460

    Article  PubMed  CAS  Google Scholar 

  16. Thimm O et al (2004) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  17. Heazlewood JL et al (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35:D213–D218

    Article  PubMed  CAS  Google Scholar 

  18. Geisler-Lee J et al (2007) A predicted interactome for Arabidopsis. Plant Physiol 145(2):317–329

    Article  PubMed  CAS  Google Scholar 

  19. Katari MS et al (2010) VirtualPlant: a software platform to support systems biology research. Plant Physiol 152:500–515

    Article  PubMed  CAS  Google Scholar 

  20. Mostafavi S et al (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9(Suppl 1):S4

    Article  PubMed  Google Scholar 

  21. Fucile G et al (2011) ePlant and the 3D data display initiative: integrative systems biology on the World Wide Web. PLoS One 6:e15237

    Article  PubMed  CAS  Google Scholar 

  22. Mu J et al (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054

    Article  PubMed  CAS  Google Scholar 

  23. Schmid M et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  24. Nakabayashi K et al (2005) Genome wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    Article  PubMed  CAS  Google Scholar 

  25. Brady SM et al (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75

    Article  PubMed  CAS  Google Scholar 

  26. Laubinger S et al (2008) At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biol 9:R112

    Article  PubMed  Google Scholar 

  27. Zeller G et al (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  PubMed  CAS  Google Scholar 

  28. Brady SM et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  PubMed  CAS  Google Scholar 

  29. Obayashi T, Kinoshita K (2009) Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res 16:249–260

    Article  PubMed  CAS  Google Scholar 

  30. Dubreucq B et al (2000) The Arabidopsis AtEPR1 extensin-like gene is specifically expressed in endosperm during seed germination. Plant J 23:643–652

    Article  PubMed  CAS  Google Scholar 

  31. Nole-Wilson S, Tranby TL, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628

    Article  PubMed  CAS  Google Scholar 

  32. Chattopadhyay S et al (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. The Plant Cell Online 10:673–684

    CAS  Google Scholar 

  33. Higo K et al (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  34. Liu B, Chen J, Shen B (2011) Genome-wide analysis of the transcription factor binding preference of human bi-directional promoters and functional annotation of related gene pairs. BMC Syst Biol 5:S2

    Article  PubMed  Google Scholar 

  35. Ouyang X et al (2011) Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. The Plant Cell Online 23:2514–2535

    Article  CAS  Google Scholar 

  36. Zhang H et al (2011) Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation. Plant J 65:346–358

    Article  PubMed  CAS  Google Scholar 

  37. Razem FA et al (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294

    Article  PubMed  CAS  Google Scholar 

  38. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  39. Baud S et al (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 40:151–160

    Article  CAS  Google Scholar 

  40. Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17:721–728

    Article  PubMed  CAS  Google Scholar 

  41. Horton P et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  Google Scholar 

  42. Aranda B et al (2009) The IntAct molecular interaction database in 2010. Nucleic Acids Res 38:D525–D531

    Article  PubMed  Google Scholar 

  43. Stark C et al (2011) The BioGRID Interaction Database: 2011 update. Nucleic Acids Res 39:D698–D704

    Article  PubMed  CAS  Google Scholar 

  44. Li P et al (2011) AtPID: the overall hierarchical functional protein interaction network interface and analytic platform for Arabidopsis. Nucleic Acids Res 39:D1130–D1133

    Article  PubMed  CAS  Google Scholar 

  45. Klopffleisch K et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7

    Google Scholar 

  46. Nakamura S, Lynch TJ, Finkelstein RR (2001) Physical interactions between ABA response loci of Arabidopsis. Plant J 26:627–635

    Article  PubMed  CAS  Google Scholar 

  47. Cui H et al (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

    Article  PubMed  CAS  Google Scholar 

  48. De Lucas M et al (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484

    Article  PubMed  Google Scholar 

  49. Dill A, Jung HS, Sun T (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci 98:14162

    Article  PubMed  CAS  Google Scholar 

  50. Nordborg M et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:e196

    Article  PubMed  Google Scholar 

  51. Choi H (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  PubMed  CAS  Google Scholar 

  52. Eden E et al (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Lucas, M., Provart, N.J., Brady, S.M. (2014). Bioinformatic Tools in Arabidopsis Research. In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics