Skip to main content

Protein Fragment Bimolecular Fluorescence Complementation Analyses for the In vivo Study of Protein-Protein Interactions and Cellular Protein Complex Localizations

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1062))

Abstract

The analyses of protein-protein interactions are crucial for understanding cellular processes including signal transduction, protein trafficking, and movement. Protein fragment complementation assays are based on the reconstitution of protein function when non-active protein fragments are brought together by interacting proteins that were genetically fused to these protein fragments. Bimolecular fluorescence complementation (BiFC) relies on the reconstitution of fluorescent proteins and enables both the analysis of protein-protein interactions and the visualization of protein complex formations in vivo.

Transient expression of proteins is a convenient approach to study protein functions in planta or in other organisms and minimizes the need for time-consuming generation of stably expressing transgenic organisms. Here we describe protocols for BiFC analyses in Nicotiana benthamiana and Arabidopsis thaliana leaves transiently transformed by Agrobacterium infiltration. Further, we discuss different BiFC applications and provide examples for proper BiFC analyses in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BiFC:

Bimolecular fluorescence complementation

BiLC:

Bimolecular luminescence complementation

BRET:

Bioluminescence resonance energy transfer

CBB:

Coomassie brilliant blue

CFP:

Cyan FP

coBiFC:

Co-localization of BiFC complexes

ECL:

Enhanced chemiluminescence

FP:

Fluorescent protein

FPC :

FP C-terminal fragment

FPN :

FP N-terminal fragment

FRET:

Fluorescence resonance energy transfer

GFP:

Green FP

iBiSC:

Isolation of BiFC-stabilized complexes

mcBiFC:

Multicolor BiFC

OD600 :

Optical density at 600 nm

PCA:

Protein fragment complementation assay

PPI:

Protein-protein interaction

PVDF:

Polyvinylidene fluoride

RFP:

Red FP

RLuc:

Renilla reniformis luciferase

SUS:

Split-ubiquitin system

TEV:

Tobacco etch virus protease

UbFC:

Ubiquitin-mediated fluorescence complementation

Y2H:

Yeast-two-hybrid

YFP:

Yellow FP

References

  1. Morsy M, Gouthu S, Orchard S, Thorneycroft D, Harper JF, Mittler R, Cushman JC (2008) Charting plant interactomes: possibilities and challenges. Trends Plant Sci 13:183–191

    Article  PubMed  CAS  Google Scholar 

  2. Lalonde S, Ehrhardt DW, Loqué D, Chen J, Rhee SY, Frommer WB (2008) Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. Plant J 53:610–635

    Article  PubMed  CAS  Google Scholar 

  3. Cusick ME, Yu H, Smolyar A, Venkatesan K, Carvunis AR, Simonis N, Rual JF, Borick H, Braun P, Dreze M, Vandenhaute J, Galli M, Yazaki J, Hill DE, Ecker JR, Roth FP, Vidal M (2009) Literature-curated protein interaction datasets. Nat Methods 6:39–46

    Article  PubMed  CAS  Google Scholar 

  4. Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12:3–18

    Article  PubMed  CAS  Google Scholar 

  5. Szabo A, Stolz L, Granzow R (1995) Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr Opin Struct Biol 5:699–705

    Article  PubMed  CAS  Google Scholar 

  6. Dufrêne YF, Hinterdorfer P (2008) Recent progress in AFM molecular recognition studies. Pflugers Arch 456:237–245

    Article  PubMed  CAS  Google Scholar 

  7. Piljic A, Schultz C (2008) Simultaneous recording of multiple cellular events by FRET. ACS Chem Biol 3:156–160

    Article  PubMed  CAS  Google Scholar 

  8. Villalobos V, Naik S, Piwnica-Worms D (2007) Current state of imaging protein-protein interactions in vivo with genetically encoded reporters. Annu Rev Biomed Eng 9:321–349

    Article  PubMed  CAS  Google Scholar 

  9. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  PubMed  CAS  Google Scholar 

  10. Pollok BA, Heim R (1999) Using GFP in FRET-based applications. Trends Cell Biol 9:57–60

    Article  PubMed  CAS  Google Scholar 

  11. Goedhart J, Vermeer JE, Adjobo-Hermans MJ, van Weeren L, Gadella TW (2007) Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples. PLoS One 2:e1011

    Article  PubMed  CAS  Google Scholar 

  12. van der Krogt GN, Ogink J, Ponsioen B, Jalink K (2008) A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example. PLoS One 3:e1916

    Article  PubMed  CAS  Google Scholar 

  13. Subramanian C, Xu Y, Johnson CH, von Arnim AG (2004) In vivo detection of protein-protein interaction in plant cells using BRET. Methods Mol Biol 284:271–286

    PubMed  CAS  Google Scholar 

  14. Xu X, Soutto M, Xie Q, Servick S, Subramanian C, von Arnim AG, Johnson CH (2007) Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci U S A 104:10264–10269

    Article  PubMed  CAS  Google Scholar 

  15. Bhat RA, Lahaye T, Panstruga R (2006) The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods. Plant Methods 2:12

    Article  PubMed  CAS  Google Scholar 

  16. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  17. Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Dröge-Laser W (2006) Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46:890–900

    Article  PubMed  CAS  Google Scholar 

  18. Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A 91:10340–10344

    Article  PubMed  CAS  Google Scholar 

  19. Stagljar I, Korostensky C, Johnsson N, te Heesen S (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci U S A 95:5187–5192

    Article  PubMed  CAS  Google Scholar 

  20. Wehr MC, Laage R, Bolz U, Fischer TM, Grünewald S, Scheek S, Bach A, Nave KA, Rossner MJ (2006) Monitoring regulated protein-protein interactions using split TEV. Nat Methods 3:985–993

    Article  PubMed  CAS  Google Scholar 

  21. Rossi F, Charlton CA, Blau HM (1997) Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc Natl Acad Sci U S A 94:8405–8410

    Article  PubMed  CAS  Google Scholar 

  22. Pelletier JN, Campbell-Valois FX, Michnick SW (1998) Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc Natl Acad Sci U S A 95:12141–12146

    Article  PubMed  CAS  Google Scholar 

  23. Remy I, Michnick SW (1999) Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci USA 96:5394–5399

    Article  PubMed  CAS  Google Scholar 

  24. Galarneau A, Primeau M, Trudeau LE, Michnick SW (2002) Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat Biotechnol 20:619–622

    Article  PubMed  CAS  Google Scholar 

  25. Wehrman T, Kleaveland B, Her JH, Balint RF, Blau HM (2002) Protein-protein interactions monitored in mammalian cells via complementation of beta-lactamase enzyme fragments. Proc Natl Acad Sci U S A 99:3469–3474

    Article  PubMed  CAS  Google Scholar 

  26. Remy I, Ghaddar G, Michnick SW (2007) Using the beta-lactamase protein-fragment complementation assay to probe dynamic protein-protein interactions. Nat Protoc 2:2302–2306

    Article  PubMed  CAS  Google Scholar 

  27. Ozawa T, Kaihara A, Sato M, Tachihara K, Umezawa Y (2001) Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem 73:2516–2521

    Article  PubMed  CAS  Google Scholar 

  28. Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci U S A 99:15608–15613

    Article  PubMed  CAS  Google Scholar 

  29. Paulmurugan R, Massoud TF, Huang J, Gambhir SS (2004) Molecular imaging of drug-modulated protein-protein interactions in living subjects. Cancer Res 64:2113–2119

    Article  PubMed  CAS  Google Scholar 

  30. Paulmurugan R, Gambhir SS (2003) Monitoring protein-protein interactions using split synthetic Renilla luciferase protein-fragment-assisted complementation. Anal Chem 75:1584–1589

    Article  PubMed  CAS  Google Scholar 

  31. Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D (2004) Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci U S A 101:12288–12293

    Article  PubMed  CAS  Google Scholar 

  32. Remy I, Michnick SW (2006) A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat Methods 3:977–979

    Article  PubMed  CAS  Google Scholar 

  33. Fujikawa Y, Kato N (2007) Split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. Plant J 52:185–195

    Article  PubMed  CAS  Google Scholar 

  34. Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou JM (2008) Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol 146:368–376

    Article  PubMed  CAS  Google Scholar 

  35. Gehl C, Kaufholdt D, Hamisch D, Bikker R, Kudla J, Mendel RR, Hänsch R (2011) Quantitative analysis of dynamic protein-protein interactions in planta by a floated-leaf luciferase complementation imaging (FLuCI) assay using binary Gateway vectors. Plant J 67:542–553

    Article  PubMed  CAS  Google Scholar 

  36. Ghosh I, Hamilton AD, Regan L (2000) Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J Am Chem Soc 122:5658–5659

    Article  CAS  Google Scholar 

  37. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    Article  PubMed  CAS  Google Scholar 

  38. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  PubMed  CAS  Google Scholar 

  39. Robida AM, Kerppola TK (2009) Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association. J Mol Biol 394:391–409

    Article  PubMed  CAS  Google Scholar 

  40. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  PubMed  CAS  Google Scholar 

  41. Kodama Y, Hu CD (2010) An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. Biotechniques 49:793–805

    Article  PubMed  CAS  Google Scholar 

  42. Li M, Doll J, Weckermann K, Oecking C, Berendzen KW, Schöffl F (2010) Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Eur J Cell Biol 89:126–132

    Article  PubMed  CAS  Google Scholar 

  43. Nakagawa C, Inahata K, Nishimura S, Sugimoto K (2011) Improvement of a Venus-based bimolecular fluorescence complementation assay to visualize bFos-bJun interaction in living cells. Biosci Biotechnol Biochem 75:1399–1401

    Article  PubMed  CAS  Google Scholar 

  44. Lin J, Wang N, Li Y, Liu Z, Tian S, Zhao L, Zheng Y, Liu S, Li S, Jin C, Xia B (2011) LEC-BiFC: a new method for rapid assay of protein interaction. Biotech Histochem 86:272–279

    Article  PubMed  CAS  Google Scholar 

  45. Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1:1278–1286

    Article  PubMed  CAS  Google Scholar 

  46. Ohad N, Shichrur K, Yalovsky S (2007) The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation. Plant Physiol 145:1090–1099

    Article  PubMed  CAS  Google Scholar 

  47. Citovsky V, Gafni Y, Tzfira T (2008) Localizing protein-protein interactions by bimolecular fluorescence complementation in planta. Methods 45:196–206

    Article  PubMed  CAS  Google Scholar 

  48. Shyu YJ, Liu H, Deng X, Hu CD (2006) Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40:61–66

    Article  PubMed  CAS  Google Scholar 

  49. Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–516

    Article  PubMed  CAS  Google Scholar 

  50. Remy I, Michnick SW (2004) A cDNA library functional screening strategy based on fluorescent protein complementation assays to identify novel components of signaling pathways. Methods 32:381–388

    Article  PubMed  CAS  Google Scholar 

  51. Wilson CG, Magliery TJ, Regan L (2004) Detecting protein-protein interactions with GFP-fragment reassembly. Nat Methods 1:255–262

    Article  PubMed  CAS  Google Scholar 

  52. Magliery TJ, Wilson CG, Pan W, Mishler D, Ghosh I, Hamilton AD, Regan L (2005) Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc 127:146–157

    Article  PubMed  CAS  Google Scholar 

  53. Beauchemin C, Boutet N, Laliberté JF (2007) Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. J Virol 81:775–782

    Article  PubMed  CAS  Google Scholar 

  54. Kojima T, Karasawa S, Miyawaki A, Tsumuraya T, Fujii I (2011) Novel screening system for protein-protein interactions by bimolecular fluorescence complementation in Saccharomyces cerevisiae. J Biosci Bioeng 111:397–401

    Article  PubMed  CAS  Google Scholar 

  55. Zhou J, Lin J, Zhou C, Deng X, Xia B (2011) An improved bimolecular fluorescence complementation tool based on superfolder green fluorescent protein. Acta Biochim Biophys Sin (Shanghai) 43:239–244

    Article  CAS  Google Scholar 

  56. Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N (2004) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427

    Article  PubMed  CAS  Google Scholar 

  57. Walter M, Chaban C, Schütze K, Batistič O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  PubMed  CAS  Google Scholar 

  58. Ottmann C, Weyand M, Wolf A, Kuhlmann J (2009) Applicability of superfolder YFP bimolecular fluorescence complementation in vitro. Biol Chem 390:81–90

    Article  PubMed  CAS  Google Scholar 

  59. Jach G, Pesch M, Richter K, Frings S, Uhrig JF (2006) An improved mRFP1 adds red to bimolecular fluorescence complementation. Nat Methods 3:597–600

    Article  PubMed  CAS  Google Scholar 

  60. Fan JY, Cui ZQ, Wei HP, Zhang ZP, Zhou YF, Wang YP, Zhang XE (2008) Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Biochem Biophys Res Commun 367:47–53

    Article  PubMed  CAS  Google Scholar 

  61. Chu J, Zhang Z, Zheng Y, Yang J, Qin L, Lu J, Huang ZL, Zeng S, Luo Q (2009) A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosens Bioelectron 25:234–239

    Article  PubMed  CAS  Google Scholar 

  62. Kodama Y, Wada M (2009) Simultaneous visualization of two protein complexes in a single plant cell using multicolor fluorescence complementation analysis. Plant Mol Biol 70:211–217

    Article  PubMed  CAS  Google Scholar 

  63. Zilian E, Maiss E (2011) An optimized mRFP-based bimolecular fluorescence complementation system for the detection of protein-protein interactions in planta. J Virol Methods 174:158–165

    Article  PubMed  CAS  Google Scholar 

  64. Lee YR, Park JH, Hahm SH, Kang LW, Chung JH, Nam KH, Hwang KY, Kwon IC, Han YS (2010) Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells. Mol Imaging Biol 12:468–478

    Article  PubMed  Google Scholar 

  65. Rebois RV, Robitaille M, Galés C, Dupré DJ, Baragli A, Trieu P, Ethier N, Bouvier M, Hébert TE (2006) Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci 119:2807–2818

    Article  PubMed  CAS  Google Scholar 

  66. Gandia J, Galino J, Amaral OB, Soriano A, Lluís C, Franco R, Ciruela F (2008) Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique. FEBS Lett 582:2979–2984

    Article  PubMed  CAS  Google Scholar 

  67. Shyu YJ, Suarez CD, Hu CD (2008) Visualization of AP-1 NF-kappaB ternary complexes in living cells by using a BiFC-based FRET. Proc Natl Acad Sci U S A 105:151–156

    Article  PubMed  CAS  Google Scholar 

  68. Kwaaitaal M, Keinath NF, Pajonk S, Biskup C, Panstruga R (2010) Combined bimolecular fluorescence complementation and Forster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol 152:1135–1147

    Article  PubMed  CAS  Google Scholar 

  69. Rebois RV, Robitaille M, Pétrin D, Zylbergold P, Trieu P, Hébert TE (2008) Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells. Methods 45:214–218

    Article  PubMed  CAS  Google Scholar 

  70. Vidi PA, Watts VJ (2009) Fluorescent and bioluminescent protein-fragment complementation assays in the study of G protein-coupled receptor oligomerization and signaling. Mol Pharmacol 75:733–739

    Article  PubMed  CAS  Google Scholar 

  71. Fang D, Kerppola TK (2004) Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc Natl Acad Sci U S A 101:14782–14787

    Article  PubMed  CAS  Google Scholar 

  72. Ikeda H, Kerppola TK (2008) Lysosomal localization of ubiquitinated Jun requires multiple determinants in a lysine-27-linked polyubiquitin conjugate. Mol Biol Cell 19:4588–4601

    Article  PubMed  CAS  Google Scholar 

  73. Rackham O, Brown CM (2004) Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J 23:3346–3355

    Article  PubMed  CAS  Google Scholar 

  74. Valencia-Burton M, McCullough RM, Cantor CR, Broude NE (2007) RNA visualization in live bacterial cells using fluorescent protein complementation. Nat Methods 4:421–427

    PubMed  CAS  Google Scholar 

  75. Ozawa T, Natori Y, Sato M, Umezawa Y (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 4:413–419

    PubMed  CAS  Google Scholar 

  76. Vincenz C, Kerppola TK (2008) Different polycomb group CBX family proteins associate with distinct regions of chromatin using nonhomologous protein sequences. Proc Natl Acad Sci U S A 105:16572–16577

    Article  PubMed  CAS  Google Scholar 

  77. Zou P, Pinotsis N, Lange S, Song YH, Popov A, Mavridis I, Mayans OM, Gautel M, Wilmanns M (2006) Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature 439:229–233

    Article  PubMed  CAS  Google Scholar 

  78. Jeong J, Kim SK, Ahn J, Park K, Jeong EJ, Kim M, Chung BH (2006) Monitoring of conformational change in maltose binding protein using split green fluorescent protein. Biochem Biophys Res Commun 339:647–651

    Article  PubMed  CAS  Google Scholar 

  79. Zamyatnin AA, Solovyev AG, Bozhkov PV, Valkonen JP, Morozov SY, Savenkov EI (2006) Assessment of the integral membrane protein topology in living cells. Plant J 46:145–154

    Article  PubMed  CAS  Google Scholar 

  80. Zhang S, Ma C, Chalfie M (2004) Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119:137–144

    Article  PubMed  CAS  Google Scholar 

  81. Morell M, Espargaro A, Aviles FX, Ventura S (2008) Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nat Protoc 3:22–33

    Article  PubMed  CAS  Google Scholar 

  82. Waadt R, Kudla J (2008) In planta visualization of protein interactions using bimolecular fluorescence complementation (BiFC). CSH Protoc 2008:pdb.prot4995

    PubMed  Google Scholar 

  83. Schütze K, Harter K, Chaban C (2009) Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods Mol Biol 479:189–202

    Article  PubMed  CAS  Google Scholar 

  84. Hollender CA, Liu Z (2010) Bimolecular fluorescence complementation (BiFC) assay for protein-protein interaction in onion cells using the helios gene gun. J Vis Exp 40:1963

    Google Scholar 

  85. Fang Y, Spector DL (2010) BiFC imaging assay for plant protein-protein interactions. CSH Protoc 2010:pdb.prot5380

    Google Scholar 

  86. Ohad N, Yalovsky S (2010) Utilizing bimolecular fluorescence complementation (BiFC) to assay protein-protein interaction in plants. Methods Mol Biol 655:347–358

    Article  PubMed  CAS  Google Scholar 

  87. Pusch S, Dissmeyer N, Schnittger A (2011) Bimolecular-fluorescence complementation assay to monitor kinase-substrate interactions in vivo. Methods Mol Biol 779:245–257

    Article  PubMed  CAS  Google Scholar 

  88. Pattanaik S, Werkman JR, Yuan L (2011) Bimolecular fluorescence complementation as a tool to study interactions of regulatory proteins in plant protoplasts. Methods Mol Biol 754:185–193

    Article  PubMed  CAS  Google Scholar 

  89. Sakuragi Y, Nørholm MH, Scheller HV (2011) Visual mapping of cell wall biosynthesis. Methods Mol Biol 715:153–167

    Article  PubMed  CAS  Google Scholar 

  90. Citovsky V, Lee LY, Vyas S, Glick E, Chen MH, Vainstein A, Gafni Y, Gelvin SB, Tzfira T (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131

    Article  PubMed  CAS  Google Scholar 

  91. Stolpe T, Süsslin C, Marrocco K, Nick P, Kretsch T, Kircher S (2005) In planta analysis of protein-protein interactions related to light signaling by bimolecular fluorescence complementation. Protoplasma 226:137–146

    Article  PubMed  CAS  Google Scholar 

  92. Lee LY, Fang MJ, Kuang LY, Gelvin SB (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4:24

    Article  PubMed  CAS  Google Scholar 

  93. Gehl C, Waadt R, Kudla J, Mendel RR, Hänsch R (2009) New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation. Mol Plant 2:1051–1058

    Article  PubMed  CAS  Google Scholar 

  94. Lee MW, Yang Y (2006) Transient expression assay by agroinfiltration of leaves. Methods Mol Biol 323:225–229

    PubMed  Google Scholar 

  95. Kim MJ, Baek K, Park CM (2009) Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep 28:1159–1167

    Article  PubMed  CAS  Google Scholar 

  96. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  97. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  98. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  99. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  100. Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  PubMed  CAS  Google Scholar 

  101. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  102. Tsuda K, Qi Y, Nguyen LV, Bethke G, Tsuda Y, Glazebrook J, Katagiri F (2011) An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant J 69:713–719

    Article  PubMed  CAS  Google Scholar 

  103. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379

    Article  PubMed  CAS  Google Scholar 

  104. Kim BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schültke S, Lee SC, Kudla J, Luan S (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484

    Article  PubMed  CAS  Google Scholar 

  105. Albrecht V, Ritz O, Linder S, Harter K, Kudla J (2001) The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J 20:1051–1063

    Article  PubMed  CAS  Google Scholar 

  106. Hashimoto K, Eckert C, Anschütz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J (2012) Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. J Biol Chem 287:7956–7968

    Article  PubMed  CAS  Google Scholar 

  107. Kremers GJ, Goedhart J, van Munster EB, Gadella TW (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biochemistry 45:6570–6580

    Article  PubMed  CAS  Google Scholar 

  108. Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    Article  PubMed  CAS  Google Scholar 

  109. Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Laurière C, Merlot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21:3170–3184

    Article  PubMed  CAS  Google Scholar 

  110. Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106:17588–17593

    Article  PubMed  CAS  Google Scholar 

  111. Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61:290–299

    Article  PubMed  CAS  Google Scholar 

  112. Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alex Costa for critical suggestions with the Arabidopsis infiltration protocol, Katrin Held for providing the YC-ABI1 construct, and Jan Niklas Offenborn for providing the OST1 construct. This work was supported by a Feodor Lynen fellowship from the Alexander von Humboldt-Foundation to R.W., a National Institutes of Health grant R01GM060396 and a National Science Foundation grant MCB0918220 to J.I.S., and grants from the DFG (SFB629 and FOR964) to J.K.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Waadt, R., Schlücking, K., Schroeder, J.I., Kudla, J. (2014). Protein Fragment Bimolecular Fluorescence Complementation Analyses for the In vivo Study of Protein-Protein Interactions and Cellular Protein Complex Localizations. In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_33

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics