Skip to main content

Highly Reproducible ChIP-on-Chip Analysis to Identify Genome-Wide Protein Binding and Chromatin Status in Arabidopsis thaliana

  • Protocol
  • First Online:
Arabidopsis Protocols

Abstract

Gene activity is regulated via chromatin dynamics in eukaryotes. In plants, alterations of histone modifications are correlated with gene regulation for development, vernalization, and abiotic stress responses. Using ChIP, ChIP-on-chip, and ChIP-seq analyses, the direct binding regions of transcription factors and alterations of histone modifications can be identified on a genome-wide level. We have established reliable and reproducible ChIP and ChIP-on-chip methods that have been optimized for the Arabidopsis model system. These methods are not only useful for identifying the direct binding of transcription factors and chromatin status but also for scanning the regulatory network in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolffe AP (1998) Packaging principle: how DNA methylation and histone acetylation control the transcriptional activity of chromatin. J Exp Zool 282:239–244

    Article  PubMed  CAS  Google Scholar 

  2. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:683–692

    Article  Google Scholar 

  3. Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4:276–284

    Article  PubMed  CAS  Google Scholar 

  4. Nightingale KP, O’Neill LP, Turner BM (2006) Histone modifications: signaling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16:125–136

    Article  PubMed  CAS  Google Scholar 

  5. Kouzarides T (2007) Chromatin modification and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  6. Bhaumik SR, Smith E, Shilatifard A (2007) Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14:1008–1016

    Article  PubMed  CAS  Google Scholar 

  7. Bártová E et al (2008) Histone modifications and nuclear architecture: a review. J Histochem Cytochem 56:711–721

    Article  PubMed  Google Scholar 

  8. Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645–652

    Article  PubMed  CAS  Google Scholar 

  9. To TK et al (2011) Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun 406:414–419

    Article  PubMed  CAS  Google Scholar 

  10. Sokol A et al (2007) Up-regulation of stress-inducible genes in tobacco anad Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227: 245–254

    Article  PubMed  CAS  Google Scholar 

  11. Kim JM et al (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588

    Article  PubMed  CAS  Google Scholar 

  12. Kim JM et al (2010) Chromatin regulation function in plant abiotic stress responses. Plant Cell Environ 33:604–611

    Article  PubMed  Google Scholar 

  13. Kwon CS et al (2009) Histone occupancy-dependent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J 60:112–121

    Article  PubMed  CAS  Google Scholar 

  14. Katou Y et al (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078–1083

    Article  PubMed  CAS  Google Scholar 

  15. Cawley S et al (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116: 499–509

    Article  PubMed  CAS  Google Scholar 

  16. Katou Y et al (2006) Genomic approach for the understanding of dynamic aspect of chromosome behavior. Methods Enzymol 409:389–410

    Article  PubMed  CAS  Google Scholar 

  17. Lee TL, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748

    Article  PubMed  CAS  Google Scholar 

  18. Zhang X et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

  19. Zilberman D et al (2006) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  PubMed  Google Scholar 

  20. Zhang X et al (2007) The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol 14:869–871

    Article  PubMed  CAS  Google Scholar 

  21. Lee J et al (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  PubMed  CAS  Google Scholar 

  22. Morohashi K, Grotewold E (2009) A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet 5:e1000396

    Article  PubMed  Google Scholar 

  23. Bolstad BM et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  24. Liu CL, Schreiber SL, Bernstein BE (2003) Development and validation of a T7 based linear amplification for genomic DNA. BMC Genomics 4:19

    Article  PubMed  CAS  Google Scholar 

  25. Matsui A et al (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using tiling array. Plant Cell Physiol 49:1135–1149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by The Grant-in-Aid for Scientific Research (Priority Areas no. 20127033 and 23012036; Innovative Areas 23119522) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (to MS) and grants from the RIKEN Plant Science Center (to MS).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kim, JM. et al. (2014). Highly Reproducible ChIP-on-Chip Analysis to Identify Genome-Wide Protein Binding and Chromatin Status in Arabidopsis thaliana . In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics