Skip to main content

Forward Chemical Genetic Screening

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1062))

Abstract

Chemical genetics utilizes small molecules to perturb biological processes. Unlike conventional genetics methods, which involve the alteration of genetic information mostly with lasting effects, chemical genetics allows temporary and reversible alterations of biological processes. Furthermore, it enables the alteration of biological processes in a dose-dependent manner, providing an advantage over conventional genetics.

In the present chapter, the general procedures of forward chemical genetic screening are described. Forward chemical genetic screening can be performed in three steps. The first step involves the identification of small molecules that induce phenotypic or physiological changes in a biological system from a chemical library. In the second step, cellular targets that interact with the isolated chemical, which are mostly proteins, are identified. Although several methods can be applied in the second step, the most common one is affinity pull-down assay using a target protein that binds to the isolated compound. However, affinity pull-down of a target protein is a formidable barrier in forward chemical genetics. We introduced a tagged chemical library approach that significantly facilitates the identification of target proteins. The third step consists of the validation of the target protein, which should include the assessment of target specificity. This step is critical because small molecules often show pleiotropic effects due to low specificity. The specificity test may include a competition assay using cold competitors and a genetic study using mutants or transgenic lines modified for the cellular target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jun J, Kim CS, Cho DS, Kwak JM, Ha CM, Park YS, Cho BH, Patton DA, Nam HG (2002) Random antisense cDNA mutagenesis as an efficient functional genomic approach in higher plants. Planta 214:668–674

    Article  PubMed  CAS  Google Scholar 

  2. Zhao Y, Dai X, Blackwell HE, Schreiber SL, Chory J (2003) SIR1, an upstream component in auxin signaling identified by chemical genetics. Science 301:1107–1110

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong JI, Yuan S, Dale JM, Tanner VN, Theologis A (2004) Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis. Proc Natl Acad Sci U S A 101:14978–14983

    Article  PubMed  CAS  Google Scholar 

  4. Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D, Geisler M, Nam HG (2010) Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 285:23309–23317

    Article  PubMed  CAS  Google Scholar 

  5. Surpin M, Rojas-Pierce M, Carter C, Hicks GR, Vasquez J, Raikhel NV (2005) The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proc Natl Acad Sci U S A 102:4902–4907

    Article  PubMed  CAS  Google Scholar 

  6. Zouhar J, Hicks GR, Raikhel NV (2004) Sorting inhibitors (sortins): chemical compounds to study vacuolar sorting in Arabidopsis. Proc Natl Acad Sci U S A 101:9497–9501

    Article  PubMed  CAS  Google Scholar 

  7. Blackwell HE, Zhao Y (2003) Chemical genetic approaches to plant biology. Plant Physiol 133:448–455

    Article  PubMed  CAS  Google Scholar 

  8. Das RK, Samanta S, Ghosh K, Zhai D, Xu W, Su D, Leong C, Chang YT (2011) Target identification: a challenging step in forward chemical genetics. IBC 3(3):1–16

    Google Scholar 

  9. Crews CM, Splittgerber U (1999) Chemical genetics: exploring and controlling cellular processes with chemical probe. Trends Biochem Sci 24:317–320

    Article  PubMed  CAS  Google Scholar 

  10. Zheng XFS, Chan TF, Zhou HH (2004) Genetic and genomic approaches to identify and study the targets of bioactive small molecules. Chem Biol 11:609–618

    Article  PubMed  CAS  Google Scholar 

  11. Khersonsky SM, Chang YT (2004) Strategies for facilitated forward chemical genetics. Chembiochem 5:903–908

    Article  PubMed  CAS  Google Scholar 

  12. Kim YK, Chang YT (2007) Tagged library approach facilitates forward chemical genetics. Mol Biosyst 3:392–397

    Article  PubMed  CAS  Google Scholar 

  13. Khersonsky SM, Jung DW, Kang TW, Walsh DP, Moon HS, Jo H, Jacobson EM, Shetty V, Neubert TA, Chang YT (2003) Facilitated forward chemical genetics using tagged triazine library and zebrafish embryo screening. J Am Chem Soc 125:11804–11805

    Article  PubMed  CAS  Google Scholar 

  14. Ahn YH, Chang YT (2007) Tagged small molecule library approach for facilitated chemical genetics. Acc Chem Res 40:1025–1033

    Article  PubMed  CAS  Google Scholar 

  15. Jin L, Hwang S, Yoo G, Choi J (2006) A mass spectrometry compatible silver staining method for protein incorporating a new silver sensitizer in sodium dodecyl sulfate-polyacrylamide electrophoresis gels. Proteomics 6:2334–2337

    Article  PubMed  CAS  Google Scholar 

  16. DeBolt S, Gutierrez R, Ehrhardt DW, Melo CV, Ross L, Cutler SR, Somerville C, Bonetta D (2007) Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement. Proc Natl Acad Sci U S A 104:5854–5859

    Article  PubMed  CAS  Google Scholar 

  17. Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123:93–100

    Article  PubMed  CAS  Google Scholar 

  18. Walsh TA, Bauer T, Neal R, Merlo AO, Schmitzer PR, Hicks GR, Honma M, Matsumura W, Wolff K, Davies JP (2007) Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. Plant Physiol 144:1292–1304

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Choi, H., Kim, JY., Chang, Y.T., Nam, H.G. (2014). Forward Chemical Genetic Screening. In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics