Skip to main content

Bioassays for Anticancer Activities

  • Protocol
  • First Online:
Metabolomics Tools for Natural Product Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1055))

Abstract

The MTT/MTS in vitro cell proliferation assay is one of the most widely used assays for evaluating preliminary anticancer activity of both synthetic derivatives and natural products and natural product extracts. The highly reliable, colorimetric based assay is readily performed on a wide range of cell lines. This assay gives an indication of whole cell cytotoxicity; however, to determine the exact molecular target further assays need to be performed. Of these, kinase inhibition assays are also one of the most widespread enzyme inhibition screening assays performed. Kinases are enzymes that play a key role in a number of physiological processes and their inhibitors have been found to exhibit anticancer activity against various human cancer cell lines. Herein, we describe the methods for performing both in vitro MTT/MTS cytotoxicity and kinase enzyme inhibition assays. These are two of the most useful anticancer screening techniques available that are relatively economical and can be easily and routinely performed in the laboratory to characterize anticancer activity. Both assays are highly versatile and can be modified to test against targeted disease processes by using specific kinase enzymes or cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida CA (2010) Cancer: basic science and clinical aspects. Wiley-Blackwell, London

    Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  3. Altman R, Sarg M (2000) The cancer dictionary. Facts on File, New York, NY

    Google Scholar 

  4. Berg K, Zhai L, Chen M et al (1994) The use of watersoluble formazan complex to quantitate the cell number and mitochondrial function of Leishmania major promastigotes. Parasitol Res 80:235–239

    Article  PubMed  CAS  Google Scholar 

  5. Malich G, Markovic B, Winder C (1997) The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 124:179–192

    Article  PubMed  CAS  Google Scholar 

  6. Matesic L, Locke JM, Bremner JB et al (2008) N-phenethyl and N-naphthylmethyl isatins and analogues as in vitro cytotoxic agents. Bioorg Med Chem 16:3118–3124

    Article  PubMed  CAS  Google Scholar 

  7. Boyd MR, Paull KD (1995) Some practical considerations and applications of the National Cancer Institue in vitro anticancer drug discovery screen. Drug Dev Res 34:91–109

    Article  CAS  Google Scholar 

  8. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823

    Article  PubMed  CAS  Google Scholar 

  9. Collins JM (2012) Developmental therapeutics program NCI/NIH. http://dtp.nci.nih.gov. Accessed 29 Jun 2012

  10. von Ahsen O, Bomer U (2005) High-throughput screening for kinase inhibitors. Chembiochem 6:481–490

    Article  Google Scholar 

  11. Copeland RA (ed) (2005) Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists (Methods in biochemical analysis). Methods of biochemical analysis. Wiley, Hoboken, NJ

    Google Scholar 

  12. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  13. Goldstein D, Gray N, Zarrinkar P (2008) High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov 7:391–397

    Article  PubMed  CAS  Google Scholar 

  14. Liao JJL (2007) Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J Med Chem 50:409–424

    Article  PubMed  CAS  Google Scholar 

  15. Sharma P, Sharma R, Tyagi R (2008) Inhibitors of cyclin dependent kinases: useful targets for cancer treatment. Curr Cancer Drug Targets 8:53–75

    Article  PubMed  CAS  Google Scholar 

  16. Skropeta D, Pastro N, Zivanovic A (2011) Kinase inhibitors from marine sponges. Mar Drugs 9:2131–2154

    Article  PubMed  CAS  Google Scholar 

  17. Ono-Saito N, Niki I, Hidaka H (1999) H-series protein kinase inhibitors and potential clinical applications. Pharmacol Ther 82:123–131

    Article  PubMed  CAS  Google Scholar 

  18. Shabb JB (2001) Physiological substrates of cAMP-dependent protein kinase. Chem Rev 101:2381–2412

    Article  PubMed  CAS  Google Scholar 

  19. Chen AE, Ginty DD, Fan CM (2005) Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nat Rev Drug Discov 433:317–322

    Article  CAS  Google Scholar 

  20. Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84:137–167

    Article  PubMed  CAS  Google Scholar 

  21. Arnsten AFT, Ramos BP, Birnbaum SG et al (2005) Protein kinase A as a therapeutic target for memory disorders: rationale and challenges. Trends Mol Med 11:121–128

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki M, Shinohara F, Endo M et al (2009) Zebularine suppresses the apoptotic potential of 5-fluorouracil via cAMP/PKA/CREB pathway against human oral squamous cell carcinoma cells. Cancer Chemother Pharmacol 64:223–232

    Article  PubMed  CAS  Google Scholar 

  23. Putz T, Culig Z, Eder IE et al (1999) Epidermal growth factor (EGF) receptor blockade inhibits the action of EGF, insulin-like growth factor I, and a protein kinase A activator on the mitogen-activated protein kinase pathway in prostate cancer cell lines. Cancer Res 59:227–233

    PubMed  CAS  Google Scholar 

  24. Bryn T, Mahic M, Aandahl EM et al (2008) Inhibition of protein kinase A improves effector function of monocytes from HIV-infected patients. AIDS Res Hum Retroviruses 24:1013–1015

    Article  PubMed  CAS  Google Scholar 

  25. Torgersen KM, Vang T, Abrahamsen H et al (2002) Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal 14:1–9

    Article  PubMed  CAS  Google Scholar 

  26. Indira CV, Matesic L, Locke JM et al (2012) Anti-cancer activity of an acid-labile N-alkylisatin conjugate targeting the transferrin receptor. Cancer Lett 316:151–156

    Article  Google Scholar 

  27. Zivanovic A, Pastro NJ, Fromont J et al (2011) Kinase inhibitory, haemolytic and cytotoxic activity of three deep-water sponges from North Western Australia and their fatty acid composition. Nat Prod Commun 6:1921–1924

    PubMed  CAS  Google Scholar 

  28. Promega (2009) Kinase-Glo® luminescent kinase assay platform

    Google Scholar 

  29. Baki A, Bielik A, Molnar L et al (2007) A high through-put luminsescent assay for glycogen synthase kinase-3 beta inhibitors. Assay Drug Dev Technol 5:75–83

    Article  PubMed  CAS  Google Scholar 

  30. Promega (2012) CellTiter 96® AQueous one solution cell proliferation assay. pp 1–13

    Google Scholar 

  31. PromegaCorporation (2012) Promega protocols. http://www.promega.com/resources/protocols. Accessed 26 Jul 2012

  32. Moore GE, Woods LK (1967) Culture media for human cells – RPMI 1603, RPMI 1634, RPMI 1640 and GEM 1717. Tissue Cult Assn 3:503–508

    Article  Google Scholar 

  33. Moore GE, Gerner RE, Franklin HA (1967) Culture of normal human leukocytes. J Am Med Assoc 199:519–524

    Article  CAS  Google Scholar 

  34. Koresawa M, Okabe T (2004) High-throughput screening with quantitation of ATP consumption: a universal non-radioisotope, homogeneous assay for protein kinase. Assay Drug Dev Technol 2:153–160

    Article  PubMed  CAS  Google Scholar 

  35. Kashem MA, Nelson RM, Yingling JD et al (2007) Three mechanistically distinct kinase assays compared: measurement of intrinsic ATPase activity identified the most comprehensive set of ITK inhibitors. J Biomol Screen 12:70–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Center of Medicinal Chemistry and the School of Chemistry, University of Wollongong.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

McCauley, J., Zivanovic, A., Skropeta, D. (2013). Bioassays for Anticancer Activities. In: Roessner, U., Dias, D. (eds) Metabolomics Tools for Natural Product Discovery. Methods in Molecular Biology, vol 1055. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-577-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-577-4_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-576-7

  • Online ISBN: 978-1-62703-577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics