Skip to main content

Determination of Absolute Configuration Using Single Crystal X-Ray Diffraction

  • Protocol
  • First Online:
Metabolomics Tools for Natural Product Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1055))

Abstract

Single crystal X-ray crystallography is the most powerful structural method for the determination of the 3D structures of molecules. While the results of a routine diffraction experiment readily provide unambiguous determination of the relative configuration of all stereogenic centers in the molecule, determination of absolute configuration is more challenging. This chapter provides some helpful tips towards increasing the chances of success in the determination of the absolute configuration of a chiral, enantiomerically pure natural product using X-ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Food and Drug Administration (1992) Policy statement for the development of new stereoisomeric drugs. US Food and Drug Administration regulatory guidance. www.fda.gov/cder/guidance/stereo.html

  2. Gawley RE, Aubé J (1996) Principles of asymmetric synthesis. Pergamon, Oxford, UK

    Google Scholar 

  3. Rouhi AM (2003) Chiral at work: drug developers can learn much from recent successful and failed chiral switches. Chem Eng News 81:56–61

    Google Scholar 

  4. Shimazawa R, Nagai N, Toyoshima S, Okuda H (2008) Present status of new chiral drug development and review in Japan. J Health Sci 54:23–29

    Article  Google Scholar 

  5. Caner H, Groner E, Levy L, Agranat I (2004) Trends in the development of chiral drugs. Drug Discov Today 9:105–110

    Article  PubMed  CAS  Google Scholar 

  6. Allenmark S, Gawronski J (2008) Determination of absolute configuration—an overview related to this special issue. Chirality 20:606–608

    Article  PubMed  CAS  Google Scholar 

  7. Bijvoet JM, Peerdeman AF, Van Bommel AJ (1951) Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168:271–272

    Article  CAS  Google Scholar 

  8. Bijvoet JM, Wiebenga EH (1972) Structure determination by X-ray diffraction. Woolters-Wardhoff, Groningen

    Google Scholar 

  9. Flack HD, Bernardinelli G (1999) Absolute structure and absolute configuration. Acta Crytallogr A 55:908–915

    Article  Google Scholar 

  10. Douglas MJ, Rutkowske RD, Miller LAD (2007) Strategies for successfully applying vibrational circular dichroism in a pharmaceutical research environment. Am Pharm Rev 10:118–123

    Google Scholar 

  11. Harada N (2008) Determination of Absolute Configurations by X-ray Crystallography and 1H NMR Anisotropy. Chirality 5:691–723

    Article  Google Scholar 

  12. Li J, Jeong S, Esser L, Harran PG (2001) Total synthesis of nominal diazonamides—part 1: convergent preparation of the structure proposed for (−)-diazonamide A. Angew Chem Int Ed 40:4765–4769

    Article  CAS  Google Scholar 

  13. Flack HD, Bernardinelli G (2008) Applications and properties of the Bijvoet intensity ratio. Acta Crytallogr A A64:484–493

    Article  Google Scholar 

  14. Flack HD (1983) On enantiomorph-polarity estimation. Acta Crystallogr A39:876–881

    CAS  Google Scholar 

  15. Parsons S, Flack H (2004) Precise absolute-structure determination in light-atom crystals. Acta Crystallogr A60:61

    Google Scholar 

  16. Hooft RWW, Straver LH, Spek AL (2008) Determination of absolute structure using Bayesian statistics on Bijvoet differences. J Appl Cryst 41:96–103

    Article  CAS  Google Scholar 

  17. Parsons S, Wagner T, Presly O, Wood PA, Cooper RL (2012) Applications of leverage analysis in structure refinement. J Appl Cryst 45:417–429

    Article  CAS  Google Scholar 

  18. Hooft RWW, Straver LH, Spek AL (2010) Using the t-distribution to improve the absolute structure assignment with likelihood calculations. J Appl Cryst 43:665–668

    Article  CAS  Google Scholar 

  19. Flack HD, Bernardinelli G (2008) The use of X-ray crystallography to determine absolute configuration. Chirality 20:681–690

    Article  PubMed  CAS  Google Scholar 

  20. Thompson AL, Watkin DJ (2009) X-ray crystallography and chirality: understanding the limitations. Tetrahe Asymm 20:712–717

    Article  CAS  Google Scholar 

  21. Deschamps JR (2010) X-ray crystallography of chemical compounds. Life Sci 86:585–589

    Article  PubMed  CAS  Google Scholar 

  22. Flack HD, Bernardinelli G (2000) Reporting and evaluating absolute-structure and absolute-configuration determinations. J Appl Cryst 33:1143–1148

    Article  CAS  Google Scholar 

  23. Flack HD (2008) The use of X-ray crystallography to determine absolute configuration. Acta Chim Slov 55:689–691

    CAS  Google Scholar 

  24. Dittrich B, Strümpel M, Koritsánszky T, Schäfer M, Spackman MA (2006) Invarioms for improved absolute structure determination of light-atom crystal structures. Acta Crystallogr A62:217–223

    CAS  Google Scholar 

  25. Bradford TA, Willis AC, White JM, Herlt AJ, Taylor WC, Mander LN (2011) The structures of four new himbacine-like Galbulimima alkaloids. Tetrahe Lett 52:188–191

    Article  CAS  Google Scholar 

  26. Hirayama N, Shirahata K (1987) Structural studies of mitomycins. Acta Crystallogr B43:555–559

    CAS  Google Scholar 

  27. Spek AL, Peerdeman AF, Van Wijngaarden I, Soudijn W (1971) The absolute configuration and crystal structure of the anticholinergic drug dexbenzetimide. Nature 232:575

    Article  CAS  Google Scholar 

  28. Culvenor CCJ, Mackay MF (1992) The absolute structure of latifoline. Aust J Chem 45:451–456

    Article  CAS  Google Scholar 

  29. Cardellicchio C, Ciccarella G, Naso F, Schingaro E, Scordari F (1998) The Betti base: absolute configuration and routes to a family of related chiral nonracemic bases. Tetrahe Asymm 9:3667–3675

    Article  CAS  Google Scholar 

  30. Desiraju GR, Bhatt PM (2008) Co-crystal formation and the determination of absolute configuration. CrystEngComm 10:1747–1749

    Article  Google Scholar 

  31. Louafi F, Moreau J, Shahane S, Golhen S, Roisnel T, Sinbandhit S, Hurvois JP (2011) Electrochemical synthesis and chemistry of chiral 1-cyanotetrahydroisoquinolines. an approach to the asymmetric syntheses of the alkaloid (−)-crispine A and its natural (+)-antipode. J Org Chem 23:9720–9732

    Article  Google Scholar 

  32. Jensen B (1988) Structure of the (+)-tartrate of the selective 5-HT2 antagonist irindalone. Acta Cryst C44:1602–1605

    CAS  Google Scholar 

  33. Peeters OM, Blaton NM, De Ranter CJ (1997) Absolute configuration of the double salt of cis-4-amino-5-chloro-N-{1-[3-(4-fluorophenoxy)propyl]-3-methoxypiperidin-1-ium-4-yl}-2-methoxybenzamide tartrate (cisapride tartrate). Acta Cryst C53:597–599

    CAS  Google Scholar 

  34. Ratti-Moberg E, Groth P, Aasen A, Arne J (1991) The absolute configuration of ketamine – a general anaesthetic. The crystal structure of the (R, R)-tartrate salt of (–)-(S)-ketamine. Acta Chem Scand 45:108–110

    Article  CAS  Google Scholar 

  35. Kobayashi Y, Kinbara K, Sato M, Saigo K (2005) Synthesis, absolute configuration, and application of enantiopure trans-1-aminobenz[f]indan-2-ol. Chirality 17:108–112

    Article  PubMed  CAS  Google Scholar 

  36. Bernal I, Korp J, Creaser II (1984) The absolute configuration of Λ-[Co(sen)] [(R, R)(+)tart] C1.6H2O and of Δ-[Co(sen)] [(R, R)(+)tart] C1.4. 5H2O (sen is 5-Methyl-5-(4-amino-2-azabutyl)-3,7-diazanonane-1,9-diamine): a comment on the mode of chiral resolutions by (R, R)(+)Tartrate on the antipodal cations of cobalt(III) salts. Aust J Chem 37:2365–2369

    Article  CAS  Google Scholar 

  37. Dahlen E, Hjalmarsson M, Norin T, Csoregh I, Ertan A (1991) Synthesis and resolution of cis-2-(1-Hydroxy-1-methylethyl)-5- methylpyrrolidine and X-ray crystal structure of its (S)-mandelate. Salt. Acta Chem Scand 45:200–205

    Article  CAS  Google Scholar 

  38. Shimizu T, Urakubo T, Kamigata N (1996) Synthesis and absolute configuration of optically active telluronium salts. Chem Lett 4:297–298

    Article  Google Scholar 

  39. Frigola J, Vano D, Torrens A, Gomez-Gomar A, Ortega E, Garcia-Granda S (1995) 7-azetidinylquinolones as antibacterial agents. 3. Synthesis, properties and structure-activity relationships of the stereoisomers containing a 7-(3-Amino-2-methyl-1-azetidinyl) moiety. J Med Chem 38:1203–1215

    Article  PubMed  CAS  Google Scholar 

  40. Polavarapu PL, Petrovic AG, Vick SE, Wulff WD, Ren H, Ding Z, Staples RJ (2009) Absolute configuration of 3,3′ -Diphenyl-[2,2′ -binaphthalene]-1,1′ -diol revisited. J Org Chem 74:5451–5457

    Article  PubMed  CAS  Google Scholar 

  41. Boiadjiev SE, Person RV, Puzicha G, Knobler C, Maverick E, Trueblood KN, Lightner DA (1992) Absolute configuration of bilirubin conformational enantiomers. J Am Chem Soc 114:10123–10133

    Article  CAS  Google Scholar 

  42. Laursen JB, Jorgensen CG, Nielson J (2003) First synthesis of racemic saphenamycin and its enantiomers. Investigation of biological activity. Bioorg Med Chem 11:723–731

    Article  PubMed  CAS  Google Scholar 

  43. Costante J, Ehlinger N, Perrin M, Collet A (1996) Absolute configuration of bromochlorofluoroacetic acid. Enantiomer 1:377–386

    CAS  Google Scholar 

  44. Yuan HS, Stevens RC, Bau R, Mosher HS, Koetzle TF (1994) Determination of the absolute configuration of (+)-neopentyl-1-d alcohol by neutron and X-ray diffraction analysis. Proc Natl Acad Sci USA 91:12872–12876

    Article  PubMed  CAS  Google Scholar 

  45. Kremsner J, Wallfisch BC, Belaj F, Uray G, Kappe CO, Wentrup C, Kollenz G (2008) Tetra-tert-butyltrioxabicyclo[3.3.1]nonadienedicarboxylic acid: optical resolution, absolute configuration and application in chiral discrimination. Eur J Org Chem 19:3382–3388

    Article  Google Scholar 

  46. Wang Z, Hirose T, Shitara H, Goto M, Nohira H (2005) Structure and chiral recognition ability of endo-3-benzamidonorborn-5-ene-2-carboxylic acid. Bull Chem Soc Jap 78:880–885

    Article  CAS  Google Scholar 

  47. Mason SF, Vane GW, Schofield K, Wells RJ, Whitehurst JS (1967) The circular dichroism and absolute configuration of Tröger’s base. J Chem Soc B, 553

    Google Scholar 

  48. Harada N (2006) Chiral auxiliaries powerful for both enantiomer resolution and determination of absolute configuration by X-ray crystallography. Top Stereochem 25:177–203

    Article  CAS  Google Scholar 

  49. Toyota S (1999) Camphorsultam – an excellent chiral reagent for enantiomer resolution and determination of absolute stereochemistry. Enantiomer 4:25–32

    CAS  Google Scholar 

  50. Kuwahara S, Obata K, Yoshida K, Matsumoto T, Harada N, Yasuda N, Ozawa Y, Toriumi K (2005) Conclusive determination of the absolute configuration of chiral C60-fullerene cis-3 bisadducts by X-ray crystallography and circular dichroism. Angew Chem Int Ed 44:2262–2265

    Article  CAS  Google Scholar 

  51. Friscic T, Jones W (2010) Benefits of cocrystallisation in pharmaceutical materials science: an update. J Pharm Pharmacol 62:1547–1559

    Article  PubMed  CAS  Google Scholar 

  52. Atkinson MBJ, Mariappan SVS, Bucar DK, Baltrusaitis J, Friscic T, Sinada NG, MacGilivray LR (2011) Crystal engineering rescues a solution organic synthesis in a cocrystallization that confirms the configuration of a molecular ladder. Proc Natl Acad Sci USA 108:10974–10979

    Article  PubMed  CAS  Google Scholar 

  53. Eccles KS, Deasy RE, Fabian L, Maguire AR, Lawrence SE (2011) The use of co-crystals for the determination of absolute stereochemistry: an alternative to salt formation. J Org Chem 76:1159–1162

    Article  PubMed  CAS  Google Scholar 

  54. Bock DA, Lehmann CW (2012) Chirality determination from X-ray powder data—diastereomeric co-crystals of mandelic acid and proline amide. CrystEngComm 14:1534–1537

    Article  CAS  Google Scholar 

  55. Sheldrick GM (2008) A short history of shelx. Acta Cryst A64:112–122

    Google Scholar 

  56. Spek AL (2009) Structure validation in chemical crystallography. Acta Cryst D65:148–155

    Google Scholar 

  57. Thompson AL, Watkin DJ (2011) CRYSTALS enhancements: absolute structure determination. J Appl Cryst 44:1017–1022

    Article  CAS  Google Scholar 

  58. Etter MC, Jahn DA, Donahue BS (1986) Growth and characterization of small molecule organic crystals. J Cryst Grow 76:645–655

    Article  CAS  Google Scholar 

  59. Jones PG (1981) Crystal growing. Chem Br 17:222–225

    CAS  Google Scholar 

  60. Sluis P, Hezemans AM, Kroon J (1989) Crystallization of low-molecular-weight organic compounds for X-ray crystallography. J Appl Cryst 22:340–344

    Article  Google Scholar 

  61. Holden A, Singer P (1960) Crystals and crystal growing. Anchor Books-Doubleday, New York, NY

    Google Scholar 

  62. Laudise RA (1970) The growth of single crystals, Solid state physical electronics series. Prentice-Hall, Inc., Englewood cliffs, NJ

    Google Scholar 

  63. http://www2.chemistry.msu.edu/facilities/crystallography/xtalgrow.pdf

  64. Hampton research catalog, http://www.hamptonresearch.com/

  65. Boyle PD (2006) http://www.udel.edu/chem/xray/Crystal_Growing_Guide.html

  66. Lachicotte RJ How to grow X-ray quality crystals, http://chem.chem.rochester.edu/~nvd/crystalgrowth.html

  67. Merritt E (1995) X-ray anomalous scattering, http://skuld.bmsc.washington.edu/scatter/AS_index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Albright, A.L., White, J.M. (2013). Determination of Absolute Configuration Using Single Crystal X-Ray Diffraction. In: Roessner, U., Dias, D. (eds) Metabolomics Tools for Natural Product Discovery. Methods in Molecular Biology, vol 1055. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-577-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-577-4_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-576-7

  • Online ISBN: 978-1-62703-577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics