Skip to main content

Molecular Biology of Maize Ac/Ds Elements: An Overview

  • Protocol
  • First Online:
Plant Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1057))

Abstract

Maize Activator (Ac) is one of the prototype transposable elements of the hAT transposon superfamily, members of which were identified in plants, fungi, and animals. The autonomous Ac and nonautonomous Dissociation (Ds) elements are mobilized by the single transposase protein encoded by Ac. To date Ac/Ds transposons were shown to be functional in approximately 20 plant species and have become the most widely used transposable elements for gene tagging and functional genomics approaches in plants. In this chapter we review the biology, regulation, and transposition mechanism of Ac/Ds elements in maize and heterologous plants. We discuss the parameters that are known to influence the functionality and transposition efficiency of Ac/Ds transposons and need to be considered when designing Ac transposase expression constructs and Ds elements for application in heterologous plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol 16:13–47

    Article  PubMed  CAS  Google Scholar 

  2. Oliver KR, Greene WK (2009) Transposable elements: powerful facilitators of evolution. Bioessays 31:703–714

    Article  PubMed  CAS  Google Scholar 

  3. Zeh DW, Zeh JA, Ishida Y (2009) Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays 31:715–726

    Article  PubMed  CAS  Google Scholar 

  4. Arensburger P et al (2011) Phylogenetic and functional characterization of the hAT transposon superfamily. Genetics 188:45–57

    Article  PubMed  CAS  Google Scholar 

  5. Kempken F, Windhofer F (2001) The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110:1–9

    Article  PubMed  CAS  Google Scholar 

  6. Kunze R, Weil CF (2002) The hAT and CACTA superfamilies of plant transposons. In: Craig NL, Craigie R, Gellert M et al (eds) Mobile DNA II. ASM Press, Washington, pp 565–610

    Google Scholar 

  7. Essers L, Adolphs RH, Kunze R (2000) A highly conserved domain of the maize Activator transposase is involved in dimerization. Plant Cell 12:211–224

    PubMed  CAS  Google Scholar 

  8. Kunze R, Starlinger P (1989) The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J 8:3177–3185

    PubMed  CAS  Google Scholar 

  9. Coupland G et al (1989) Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc Natl Acad Sci USA 86:9385–9388

    Article  PubMed  CAS  Google Scholar 

  10. Kunze R et al (1987) Transcription of transposable element Activator (Ac) of Zea mays L. EMBO J 6:1555–1563

    PubMed  CAS  Google Scholar 

  11. Coupland G et al (1988) Characterization of the maize transposable element Ac by internal deletions. EMBO J 7:3653–3659

    PubMed  CAS  Google Scholar 

  12. Du C et al (2011) The complete Ac/Ds transposon family of maize. BMC Genomics 12:588

    Article  PubMed  CAS  Google Scholar 

  13. Xiao YL, Peterson T (2002) Ac transposition is impaired by a small terminal deletion. Mol Genet Genomics 266:720–731

    Article  PubMed  CAS  Google Scholar 

  14. Chatterjee S, Starlinger P (1995) The role of subterminal sites of transposable element Ds of Zea mays in excision. Mol Gen Genet 249:281–288

    Article  PubMed  CAS  Google Scholar 

  15. Döring H-P, Starlinger P (1986) Molecular genetics of transposable elements in plants. Annu Rev Genet 20:175–200

    Article  PubMed  Google Scholar 

  16. Martinez-Ferez IM, Dooner HK (1997) Sesqui-Ds, the chromosome-breaking insertion at bz-m1, links double Ds to the original Ds element. Mol Gen Genet 255:580–586

    Article  PubMed  CAS  Google Scholar 

  17. McClintock B (1948) Mutable loci in maize. Carnegie Inst Wash Yr Bk 47:155–169

    Google Scholar 

  18. Döring H-P et al (1989) Double Ds elements are involved in specific chromosome breakage. Mol Gen Genet 219:299–305

    PubMed  Google Scholar 

  19. Dooner HK, Belachew A (1991) Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics 129:855–862

    PubMed  CAS  Google Scholar 

  20. Weil CF, Wessler SR (1993) Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell 5:515–522

    PubMed  CAS  Google Scholar 

  21. Zhang J, Peterson T (1999) Genome rearrangements by nonlinear transposons in maize. Genetics 153:1403–1410

    PubMed  CAS  Google Scholar 

  22. Zhang J, Peterson T (2004) Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics 167:1929–1937

    Article  PubMed  CAS  Google Scholar 

  23. Zhang J, Peterson T (2005) A segmental deletion series generated by sister-chromatid transposition of Ac transposable elements in maize. Genetics 171:333–344

    Article  PubMed  CAS  Google Scholar 

  24. Zhang J, Zhang F, Peterson T (2006) Transposition of reversed Ac element ends generates novel chimeric genes in maize. PLoS Genet 2:e164

    Article  PubMed  CAS  Google Scholar 

  25. Zhang J et al (2009) Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes Dev 23:755–765

    Article  PubMed  CAS  Google Scholar 

  26. Yu C et al (2010) Spatial configuration of transposable element Ac termini affects their ability to induce chromosomal breakage in maize. Plant Cell 22:744–754

    Article  PubMed  CAS  Google Scholar 

  27. Huang JT, Dooner HK (2008) Macrotransposition and other complex chromosomal restructuring in maize by closely linked transposons in direct orientation. Plant Cell 20:2019–2032

    Article  PubMed  CAS  Google Scholar 

  28. Ralston EJ, English J, Dooner HK (1989) Chromosome-breaking structure in maize involved in a fractured Ac element. Proc Natl Acad Sci USA 86:9451–9455

    Article  PubMed  CAS  Google Scholar 

  29. Yu C, Zhang J, Peterson T (2011) Genome rearrangements in maize induced by alternative transposition of reversed Ac/Ds termini. Genetics 188:59–67

    Article  PubMed  CAS  Google Scholar 

  30. Krishnaswamy L, Zhang J, Peterson T (2008) Reversed end Ds element: a novel tool for chromosome engineering in Arabidopsis. Plant Mol Biol 68:399–411

    Article  PubMed  CAS  Google Scholar 

  31. Xuan YH et al (2011) Transposon Ac/Ds-induced chromosomal rearrangements at the rice OsRLG5 locus. Nucleic Acids Res 39:e149

    Article  PubMed  CAS  Google Scholar 

  32. Belzile F, Yoder JI (1994) Unstable transmission and frequent rearrangement of two closely linked transposed Ac elements in transgenic tomato. Genome 37:832–839

    Article  PubMed  CAS  Google Scholar 

  33. English J, Harrison K, Jones JDG (1993) A genetic analysis of DNA sequence requirements for dissociation state I activity in tobacco. Plant Cell 5:501–514

    PubMed  CAS  Google Scholar 

  34. English JJ, Harrison K, Jones JDG (1995) Aberrant transpositions of maize double Ds-like elements usually involve Ds ends on sister chromatids. Plant Cell 7:1235–1247

    PubMed  CAS  Google Scholar 

  35. Yu C et al (2012) A transgenic system for generation of transposon Ac/Ds-induced chromosome rearrangements in rice. Theor Appl Genet 125:1449–1462

    Article  PubMed  CAS  Google Scholar 

  36. Wang L, Heinlein M, Kunze R (1996) Methylation pattern of activator (Ac) transposase binding sites in maize endosperm. Plant Cell 8:747–758

    PubMed  CAS  Google Scholar 

  37. Wang L, Kunze R (1998) Transposase binding site methylation in the epigenetically inactivated Ac derivative Ds-cy. Plant J 13:577–582

    Article  PubMed  CAS  Google Scholar 

  38. Sutton WD et al (1984) Molecular analysis of Ds controlling element mutations at the Adh1 locus of maize. Science 223:1265–1268

    Article  PubMed  CAS  Google Scholar 

  39. Bravo-Angel AM et al (1995) The binding motifs for Ac transposase are absolutely required for excision of Ds1. Mol Gen Genet 248:527–534

    Article  PubMed  CAS  Google Scholar 

  40. Caldwell EEO, Peterson PA (1992) The Ac and Uq transposable element systems in maize: interactions among components. Genetics 131:723–731

    PubMed  CAS  Google Scholar 

  41. Boehm U et al (1995) One of three nuclear localization signals of maize Activator (Ac) transposase overlaps the DNA-binding domain. Plant J 7:441–451

    Article  PubMed  CAS  Google Scholar 

  42. Feldmar S, Kunze R (1991) The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. EMBO J 10:4003–4010

    PubMed  CAS  Google Scholar 

  43. Becker H-A, Kunze R (1997) Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal motifs and the terminal inverted repeats. Mol Gen Genet 254:219–230

    Article  PubMed  CAS  Google Scholar 

  44. Aravind L (2000) The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem Sci 25:421–423

    Article  PubMed  CAS  Google Scholar 

  45. Nesmelova IV, Hackett PB (2010) DDE transposases: structural similarity and diversity. Adv Drug Deliv Rev 62:1187–1195

    Article  PubMed  CAS  Google Scholar 

  46. Kunze R et al (1993) Dominant transposition-deficient mutants of maize Activator (Ac) transposase. Proc Natl Acad Sci USA 90:7094–7098

    Article  PubMed  CAS  Google Scholar 

  47. Calvi BR et al (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator and Tam3. Cell 66:465–471

    Article  PubMed  CAS  Google Scholar 

  48. Hehl R et al (1991) Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol Biol 16:369–371

    Article  PubMed  CAS  Google Scholar 

  49. Essers L, Kunze R (1995) Transposable elements Bg (Zea mays) and Tag1 (Arabidopsis thaliana) encode protein sequences with homology to Ac-like transposases. Maize Genet Coop Newsl 69:39–41

    Google Scholar 

  50. Kunze R, Saedler H, Lönnig W-E (1997) Plant transposable elements. In: Callow JA (ed) Adv Bot Res, vol 27. Academic, London, pp 331–470

    Google Scholar 

  51. Capy P et al (1997) Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor? Genetica 100:63–72

    Article  PubMed  CAS  Google Scholar 

  52. Haren L, Ton-Hoang B, Chandler M (1999) Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 53:245–281

    Article  PubMed  CAS  Google Scholar 

  53. Zhou L et al (2004) Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432:995–1001

    Article  PubMed  CAS  Google Scholar 

  54. Yuan YW, Wessler SR (2011) The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci USA 108:7884–7889

    Article  PubMed  CAS  Google Scholar 

  55. Hickman AB et al (2005) Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol 12:715–721

    Article  PubMed  CAS  Google Scholar 

  56. Lazarow K et al (2012) A hyperactive transposase of the maize transposable element activator (ac). Genetics 191:747–756

    Article  PubMed  CAS  Google Scholar 

  57. Li M-g, Starlinger P (1990) Mutational analysis of the N terminus of the protein of maize transposable element Ac. Proc Natl Acad Sci USA 87:6044–6048

    Article  PubMed  CAS  Google Scholar 

  58. Heinlein M, Brattig T, Kunze R (1994) In vivo aggregation of maize activator (Ac) transposase in nuclei of maize endosperm and petunia protoplasts. Plant J 5:705–714

    Article  PubMed  CAS  Google Scholar 

  59. Emelyanov A et al (2006) Trans-kingdom transposition of the maize dissociation element. Genetics 174:1095–1104

    Article  PubMed  CAS  Google Scholar 

  60. Kunze R et al (1995) Somatic and germinal activities of maize activator (Ac) transposase mutants in transgenic tobacco. Plant J 8:45–54

    Article  CAS  Google Scholar 

  61. Lazarow K, Lütticke S (2009) An Ac/Ds-mediated gene trap system for functional genomics in barley. BMC Genomics 10:55

    Article  PubMed  CAS  Google Scholar 

  62. Weil CF, Kunze R (2000) Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat Genet 26:187–190

    Article  PubMed  CAS  Google Scholar 

  63. Yu J et al (2004) Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae. Mol Cell Biol 24:1351–1364

    Article  PubMed  CAS  Google Scholar 

  64. Boon Ng GH, Gong Z (2011) Maize Ac/Ds transposon system leads to highly efficient germline transmission of transgenes in medaka (Oryzias latipes). Biochimie 93:1858–1864

    Article  PubMed  CAS  Google Scholar 

  65. Froschauer A et al (2012) Effective generation of transgenic reporter and gene trap lines of the medaka (Oryzias latipes) using the Ac/Ds transposon system. Transgenic Res 21:149–162

    Article  PubMed  CAS  Google Scholar 

  66. Michel K, Atkinson PW (2003) Nuclear localization of the Hermes transposase depends on basic amino acid residues at the N-terminus of the protein. J Cell Biochem 89:778–790

    Article  PubMed  CAS  Google Scholar 

  67. Coen ES, Carpenter R, Martin C (1986) Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47:285–296

    Article  PubMed  CAS  Google Scholar 

  68. Roth DB et al (1992) V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70:983–991

    Article  PubMed  CAS  Google Scholar 

  69. McBlane JF et al (1995) Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83:387–395

    Article  PubMed  CAS  Google Scholar 

  70. Lu CP et al (2006) Amino acid residues in Rag1 crucial for DNA hairpin formation. Nat Struct Mol Biol 13:1010–1015

    Article  PubMed  CAS  Google Scholar 

  71. Ma Y et al (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794

    Article  PubMed  CAS  Google Scholar 

  72. Huefner ND et al (2011) Breadth by depth: expanding our understanding of the repair of transposon-induced DNA double strand breaks via deep-sequencing. DNA Repair (Amst) 10:1023–1033

    Article  CAS  Google Scholar 

  73. Rinehart TA, Dean C, Weil CF (1997) Comparative analysis of non-random DNA repair following Ac transposon excision in maize and Arabidopsis. Plant J 12:1419–1427

    Article  PubMed  CAS  Google Scholar 

  74. Namgoong SY, Harshey RM (1998) The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition. EMBO J 17:3775–3785

    Article  PubMed  CAS  Google Scholar 

  75. Kennedy AK, Haniford DB, Mizuuchi K (2000) Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Cell 101:295–305

    Article  PubMed  CAS  Google Scholar 

  76. Williams TL et al (1999) Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Genes Dev 13:2725–2737

    Article  PubMed  CAS  Google Scholar 

  77. Vollbrecht E et al (2010) Genome-wide distribution of transposed dissociation elements in maize. Plant Cell 22:1667–1685

    Article  PubMed  CAS  Google Scholar 

  78. Liao GC, Rehm EJ, Rubin GM (2000) Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci USA 97:3347–3351

    Article  PubMed  CAS  Google Scholar 

  79. Bennetzen JL et al (1994) Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37:565–576

    Article  PubMed  CAS  Google Scholar 

  80. Chen J, Greenblatt IM, Dellaporta SL (1987) Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117:109–116

    PubMed  CAS  Google Scholar 

  81. Kolkman JM et al (2005) Distribution of activator (Ac) throughout the maize genome for use in regional mutagenesis. Genetics 169:981–995

    Article  PubMed  CAS  Google Scholar 

  82. Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  83. Cowperthwaite M et al (2002) Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell 14:713–726

    Article  PubMed  CAS  Google Scholar 

  84. Athma P, Grotewold E, Peterson T (1992) Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics 131:199–209

    PubMed  CAS  Google Scholar 

  85. Dooner HK, Belachew A (1989) Transposition pattern of the maize element Ac from the bz-m2(Ac) allele. Genetics 122:447–457

    PubMed  CAS  Google Scholar 

  86. Greenblatt IM (1984) A chromosomal replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize. Genetics 108:471–485

    PubMed  CAS  Google Scholar 

  87. Moreno MA et al (1992) Reconstitutional mutagenesis of the maize P gene by short-range Ac transpositions. Genetics 131:939–956

    PubMed  CAS  Google Scholar 

  88. Van Schaik NW, Brink RA (1959) Transpositions of modulator, a component of the variegated pericarp allele in maize. Genetics 44:725–738

    PubMed  Google Scholar 

  89. Lawson EJR et al (1994) Modification of the 5′ untranslated leader region of the maize Activator element leads to increased activity in Arabidopsis. Mol Gen Genet 245:608–615

    Article  PubMed  CAS  Google Scholar 

  90. Scortecci KC et al (1999) Negative effect of the 5′-untranslated leader sequence on Ac transposon promoter expression. Plant Mol Biol 40:935–944

    Article  PubMed  CAS  Google Scholar 

  91. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  PubMed  CAS  Google Scholar 

  92. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  93. Brettell RIS, Dennis ES (1991) Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation pattern. Mol Gen Genet 229:365–372

    Article  PubMed  CAS  Google Scholar 

  94. Brutnell TP, Dellaporta SL (1994) Somatic inactivation and reactivation of Ac associated with changes in cytosine methylation and transposase expression. Genetics 138:213–225

    PubMed  CAS  Google Scholar 

  95. Kunze R, Starlinger P, Schwartz D (1988) DNA methylation of the maize transposable element Ac interferes with its transcription. Mol Gen Genet 214:325–327

    Article  CAS  Google Scholar 

  96. Fusswinkel H et al (1991) Detection and abundance of mRNA and protein encoded by transposable element Activator (Ac) in maize. Mol Gen Genet 225:186–192

    Article  PubMed  CAS  Google Scholar 

  97. Kohli A et al (2004) Dedifferentiation-mediated changes in transposition behavior make the activator transposon an ideal tool for functional genomics in rice. Mol Breeding 13:177–191

    Article  CAS  Google Scholar 

  98. Brutnell TP, May BP, Dellaporta SL (1997) The Ac-st2 element of maize exhibits a positive dosage effect and epigenetic regulation. Genetics 147:823–834

    PubMed  CAS  Google Scholar 

  99. Slotkin RK, Freeling M, Lisch D (2003) Mu killer causes the heritable inactivation of the mutator family of transposable elements in Zea mays. Genetics 165:781–797

    PubMed  CAS  Google Scholar 

  100. Slotkin RK, Freeling M, Lisch D (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37:641–644

    Article  PubMed  CAS  Google Scholar 

  101. Heinlein M (1996) Excision patterns of activator (Ac) and dissociation (Ds) elements in Zea mays L: implications for the regulation of transposition. Genetics 144:1851–1869

    PubMed  CAS  Google Scholar 

  102. Scofield SR, English JJ, Jones JDG (1993) High level expression of the activator transposase gene inhibits the excision of dissociation in tobacco cotyledons. Cell 75:507–517

    Article  PubMed  CAS  Google Scholar 

  103. Takumi S et al (1999) Variations in the maize Ac transposase transcript level and the Ds excision frequency in transgenic wheat callus lines. Genome 42:1234–1241

    PubMed  CAS  Google Scholar 

  104. Grabundzija I et al (2010) Comparative analysis of transposable element vector systems in human cells. Mol Ther 18:1200–1209

    Article  PubMed  CAS  Google Scholar 

  105. Lohe AR, Hartl DL (1996) Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol Biol Evol 13:549–555

    Article  PubMed  CAS  Google Scholar 

  106. Chen J, Greenblatt IM, Dellaporta SL (1992) Molecular analysis of Ac transposition and DNA replication. Genetics 130:665–676

    PubMed  CAS  Google Scholar 

  107. Ros F, Kunze R (2001) Regulation of activator/dissociation transposition by replication and DNA methylation. Genetics 157:1723–1733

    PubMed  CAS  Google Scholar 

  108. Houba-Hérin N, Domin M, Pedron J (1994) Transposition of a Ds element from a plasmid into the plant genome in Nicotiana plumbaginifolia protoplast-derived cells. Plant J 6:55–66

    Article  PubMed  Google Scholar 

  109. Laufs J et al (1990) Wheat dwarf virus Ac/Ds vectors: expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc Natl Acad Sci USA 87:7752–7756

    Article  PubMed  CAS  Google Scholar 

  110. McElroy D et al (1997) Development of a simple transient assay for Ac/Ds activity in cells of intact barley tissue. Plant J 11:157–165

    Article  PubMed  CAS  Google Scholar 

  111. Sugimoto K et al (1994) Transposition of the maize Ds element from a viral vector to the rice genome. Plant J 5:863–871

    Article  PubMed  CAS  Google Scholar 

  112. Wirtz U, Osborne B, Baker B (1997) Ds excision from extrachromosomal geminivirus vector DNA is coupled to vector DNA replication in maize. Plant J 11:125–135

    Article  PubMed  CAS  Google Scholar 

  113. Baker B et al (1986) Transposition of the maize controlling element “Activator” in tobacco. Proc Natl Acad Sci USA 83:4844–4848

    Article  PubMed  CAS  Google Scholar 

  114. Baker B et al (1987) Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J 6:1547–1554

    PubMed  CAS  Google Scholar 

  115. Yoder JI (1990) Rapid proliferation of the maize transposable element Activator in transgenic tomato. Plant Cell 2:723–730

    PubMed  CAS  Google Scholar 

  116. Roberts MR et al (1990) Excision of the maize transposable element Ac in flax callus. Plant Cell Rep 9:406–409

    Article  CAS  Google Scholar 

  117. Schmidt R, Willmitzer L (1989) The maize autonomous element activator (Ac) shows a minimal germinal excision frequency of 0.2–0.5 % in transgenic Arabidopsis thaliana plants. Mol Gen Genet 220:17–24

    Article  CAS  Google Scholar 

  118. Yang CH, Ellis JG, Michelmore RW (1993) Infrequent transposition of Ac in lettuce, Lactuca sativa. Plant Mol Biol 22:793–805

    Article  PubMed  CAS  Google Scholar 

  119. McKenzie N, Wen LY, Dale J (2002) Tissue-culture enhanced transposition of the maize transposable element dissociation in Brassica oleracea var. ‘Italica’. Theor Appl Genet 105:23–33

    Article  PubMed  CAS  Google Scholar 

  120. Dean C et al (1992) Behavior of the maize transposable element Ac in Arabidopsis thaliana. Plant J 2:69–81

    Article  CAS  Google Scholar 

  121. Hehl R, Baker B (1989) Induced transposition of Ds by a stable Ac in crosses of transgenic tobacco plants. Mol Gen Genet 217:53–59

    Article  PubMed  CAS  Google Scholar 

  122. Bancroft I et al (1992) Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Mol Gen Genet 233:449–461

    Article  PubMed  CAS  Google Scholar 

  123. Swinburne J et al (1992) Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis. Plant Cell 4:583–595

    PubMed  CAS  Google Scholar 

  124. Scofield SR et al (1992) Promoter fusions to the Activator transposase gene cause distinct patterns of Dissociation excision in tobacco cotyledons. Plant Cell 4:573–582

    PubMed  CAS  Google Scholar 

  125. Becker D et al (1992) Control of excision frequency of maize transposable element Ds in Petunia protoplasts. Proc Natl Acad Sci USA 89:5552–5556

    Article  PubMed  CAS  Google Scholar 

  126. Dowe MF Jr, Roman GW, Klein AS (1990) Excision and transposition of two Ds transposons from the bronze mutable 4 derivative 6856 allele of Zea mays L. Mol Gen Genet 221:475–485

    Article  PubMed  CAS  Google Scholar 

  127. Balcells L, Coupland G (1994) The presence of enhancers adjacent to the Ac promoter increases the abundance of transposase mRNA and alters the timing of Ds excision in Arabidopsis. Plant Mol Biol 24:789–798

    Article  PubMed  CAS  Google Scholar 

  128. Long D et al (1993) Analysis of the frequency of inheritance of transposed Ds elements in Arabidopsis after activation by a CaMV 35S promoter fusion to the Ac transposase gene. Mol Gen Genet 241:627–636

    Article  PubMed  CAS  Google Scholar 

  129. Finnegan EJ et al (1993) Behaviour of modified Ac elements in flax callus and regenerated plants. Plant Mol Biol 22:625–633

    Article  PubMed  CAS  Google Scholar 

  130. Finnegan EJ et al (1988) Transcription of the maize transposable element Ac in maize seedlings and in transgenic tobacco. Mol Gen Genet 212:505–509

    Article  CAS  Google Scholar 

  131. Takumi S et al (1999) Trans-activation of a maize Ds transposable element in transgenic wheat plants expressing the Ac transposase gene. Theor Appl Genet 98:947–953

    Article  CAS  Google Scholar 

  132. Grevelding C et al (1992) High rates of Ac/Ds germinal transposition in Arabidopsis suitable for gene isolation by insertional mutagenesis. Proc Natl Acad Sci USA 89:6085–6089

    Article  PubMed  CAS  Google Scholar 

  133. Jarvis P, Belzile F, Dean C (1997) Inefficient and incorrect processing of the Ac transposase transcript in iae1 and wild-type Arabidopsis thaliana. Plant J 11:921–931

    Article  PubMed  CAS  Google Scholar 

  134. Lisson R et al (2010) Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.). Plant Mol Biol 74:19–32

    Article  PubMed  CAS  Google Scholar 

  135. Martin DJ et al (1997) Alternative processing of the maize Ac transcript in Arabidopsis. Plant J 11:933–943

    Article  PubMed  CAS  Google Scholar 

  136. Houba-Hérin N et al (1990) Excision of a Ds-like maize transposable element (AcΔ) in a transient assay in Petunia is enhanced by a truncated coding region of the transposable element Ac. Mol Gen Genet 224:17–23

    Article  PubMed  Google Scholar 

  137. Shen WH, Ramos C, Hohn B (1998) Excision of Ds1 from the genome of maize streak virus in response to different transposase-encoding genes. Plant Mol Biol 36:387–392

    Article  PubMed  CAS  Google Scholar 

  138. Ito T et al (2005) A resource of 5,814 dissociation transposon-tagged and sequence-indexed lines of Arabidopsis transposed from start loci on chromosome 5. Plant Cell Physiol 46:1149–1153

    Article  PubMed  CAS  Google Scholar 

  139. Parinov S et al (1999) Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11:2263–2270

    PubMed  CAS  Google Scholar 

  140. Kuromori T et al (2004) A collection of 11 800 single-copy Ds transposon insertion lines in Arabidopsis. Plant J 37:897–905

    Article  PubMed  CAS  Google Scholar 

  141. Pan X, Li Y, Stein L (2005) Site preferences of insertional mutagenesis agents in Arabidopsis. Plant Physiol 137:168–175

    Article  PubMed  CAS  Google Scholar 

  142. Zhang BD et al (1999) Cloning of the DNA fragments flanking Ds insertion sites in tobacco genome. Acta Phytophysiol Sinica 25:7–14

    Google Scholar 

  143. Meissner R et al (2000) Technical advance: a high throughput system for transposon tagging and promoter trapping in tomato. Plant J 22:265–274

    Article  PubMed  CAS  Google Scholar 

  144. Carroll BJ et al (1995) Germinal transpositions of the maize element Dissociation from T-DNA loci in tomato. Genetics 139:407–420

    PubMed  CAS  Google Scholar 

  145. Cooper LD et al (2004) Mapping Ds insertions in barley using a sequence-based approach. Mol Genet Genomics 272:181–193

    Article  PubMed  CAS  Google Scholar 

  146. Zhao T et al (2006) Mapped Ds/T-DNA launch pads for functional genomics in barley. Plant J 47:811–826

    Article  PubMed  Google Scholar 

  147. Singh J et al (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol Biol 62:937–950

    Article  PubMed  CAS  Google Scholar 

  148. Enoki H et al (1999) Ac as a tool for the functional genomics of rice. Plant J 19:605–613

    Article  PubMed  CAS  Google Scholar 

  149. Greco R et al (2003) Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet 108:10–24

    Article  PubMed  CAS  Google Scholar 

  150. Kim CM et al (2004) Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J 39:252–263

    Article  PubMed  CAS  Google Scholar 

  151. Kolesnik T et al (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301–314

    Article  PubMed  CAS  Google Scholar 

  152. van Enckevort LJ et al (2005) EU-OSTID: a collection of transposon insertional mutants for functional genomics in rice. Plant Mol Biol 59:99–110

    Article  PubMed  CAS  Google Scholar 

  153. Jones JDG et al (1990) Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2:701–707

    PubMed  CAS  Google Scholar 

  154. Dooner HK et al (1991) Variable patterns of transposition of the maize element Activator in tobacco. Plant Cell 3:473–482

    PubMed  CAS  Google Scholar 

  155. Stuurman J et al (1996) Single-site manipulation of tomato chromosomes in vitro and in vivo using Cre-lox site-specific recombination. Plant Mol Biol 32:901–913

    Article  PubMed  CAS  Google Scholar 

  156. Stuurman J, Nijkamp HJJ, van Haaren MJJ (1998) Molecular insertion-site selectivity of Ds in tomato. Plant J 14:215–223

    CAS  Google Scholar 

  157. Keller J, Lim E, Dooner HK (1993) Preferential transposition of Ac to linked sites in Arabidopsis. Theor Appl Genet 86:585–588

    Article  CAS  Google Scholar 

  158. Bancroft I, Dean C (1993) Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134:1221–1229

    PubMed  CAS  Google Scholar 

  159. Machida C et al (1997) Characterization of the transposition pattern of the Ac element in Arabidopsis thaliana using endonuclease I-SceI. Proc Natl Acad Sci USA 94:8675–8680

    Article  PubMed  CAS  Google Scholar 

  160. Ito T et al (2002) A new resource of locally transposed dissociation elements for screening gene-knockout lines in silico on the Arabidopsis genome. Plant Physiol 129:1695–1699

    Article  PubMed  CAS  Google Scholar 

  161. Smith D et al (1996) Characterization and mapping of Ds-GUS-T-DNA lines for targeted insertional mutagenesis. Plant J 10:721–732

    Article  PubMed  CAS  Google Scholar 

  162. Koprek T et al (2000) An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J 24:253–263

    Article  PubMed  CAS  Google Scholar 

  163. Upadhyaya NM et al (2006) Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theor Appl Genet 112:1326–1341

    Article  PubMed  CAS  Google Scholar 

  164. Mckenzie N, Dale PJ (2004) Mapping of transposable element dissociation inserts in Brassica oleracea following plant regeneration from streptomycin selection of callus. Theor Appl Genet 109:333–341

    Article  PubMed  CAS  Google Scholar 

  165. Nishal B, Tantikanjana T, Sundaresan V (2005) An inducible targeted tagging system for localized saturation mutagenesis in Arabidopsis. Plant Physiol 137:3–12

    Article  PubMed  CAS  Google Scholar 

  166. Sundaresan V et al (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810

    Article  PubMed  CAS  Google Scholar 

  167. Marsch-Martinez N et al (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129:1544–1556

    Article  PubMed  CAS  Google Scholar 

  168. Schneider A et al (2005) A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations. FEBS Lett 579:4622–4628

    Article  PubMed  CAS  Google Scholar 

  169. Greco R et al (2004) Transcription and somatic transposition of the maize En/Spm transposon system in rice. Mol Genet Genomics 270:514–523

    Article  PubMed  CAS  Google Scholar 

  170. Kumar CS, Wing RA, Sundaresan V (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44:879–892

    Article  PubMed  CAS  Google Scholar 

  171. Ahern KR et al (2009) Regional mutagenesis using dissociation in maize. Methods 49:248–254

    Article  PubMed  CAS  Google Scholar 

  172. Wang F et al (2010) An Ac transposon system based on maize chromosome 4S for isolating long-distance-transposed Ac tags in the maize genome. Genetica 138:1261–1270

    Article  PubMed  CAS  Google Scholar 

  173. Kuromori T et al (2006) A trial of phenome analysis using 4000 Ds-insertional mutants in gene-coding regions of Arabidopsis. Plant J 47:640–651

    Article  PubMed  CAS  Google Scholar 

  174. Zhang S et al (2003) Resources for targeted insertional and deletional mutagenesis in Arabidopsis. Plant Mol Biol 53:133–150

    Article  PubMed  CAS  Google Scholar 

  175. Muskett PR et al (2003) A resource of mapped dissociation launch pads for targeted insertional mutagenesis in the Arabidopsis genome. Plant Physiol 132:506–516

    Article  PubMed  CAS  Google Scholar 

  176. Panjabi P, Burma PK, Pental D (2006) Use of the transposable element Ac/Ds in conjunction with Spm/dSpm for gene tagging allows extensive genome coverage with a limited number of starter lines: functional analysis of a four-element system in Arabidopsis thaliana. Mol Genet Genomics 276:533–543

    Article  PubMed  CAS  Google Scholar 

  177. Park SH et al (2007) Analysis of gene-trap Ds rice populations in Korea. Plant Mol Biol 65:373–384

    Article  PubMed  CAS  Google Scholar 

  178. Eamens AL et al (2004) A bidirectional gene trap construct suitable for T-DNA and Ds-mediated insertional mutagenesis in rice (Oryza sativa L.). Plant Biotechnol J 2:367–380

    Article  PubMed  CAS  Google Scholar 

  179. Qu S et al (2008) A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiol 146:189–199

    Article  PubMed  CAS  Google Scholar 

  180. Qu S et al (2009) Construction and application of efficient Ac-Ds transposon tagging vectors in rice. J Integr Plant Biol 51:982–992

    Article  PubMed  CAS  Google Scholar 

  181. Luan WJ et al (2008) An efficient field screening procedure for identifying transposants for constructing an Ac/Ds-based insertional-mutant library of rice. Genome 51:41–49

    Article  PubMed  CAS  Google Scholar 

  182. Ayliffe MA et al (2007) A barley activation tagging system. Plant Mol Biol 64:329–347

    Article  PubMed  CAS  Google Scholar 

  183. Mathieu M et al (2009) Establishment of a soybean (Glycine max Merr. L) transposon-based mutagenesis repository. Planta 229:279–289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft (DFG) grant KU-715/9 and the Dahlem Centre of Plant Sciences (DCPS).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Lazarow, K., Doll, ML., Kunze, R. (2013). Molecular Biology of Maize Ac/Ds Elements: An Overview. In: Peterson, T. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 1057. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-568-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-568-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-567-5

  • Online ISBN: 978-1-62703-568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics