Skip to main content

Survey of Natural and Transgenic Gene Markers Used to Monitor Transposon Activity

  • Protocol
  • First Online:
Plant Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1057))

  • 3044 Accesses

Abstract

Marker genes have played a critical role in the discovery of plant transposable elements, our understanding of transposon biology, and the utility of transposable elements as tools in functional genomics. Marker traits in model plants have been useful to detect transposable elements and to study the dynamics of transposition. Transposon-induced changes in the sequence of marker genes and consequently their expression have contributed to our understanding of molecular mechanisms of transposition and associated genome rearrangements. Further, marker genes that have been cloned and are compatible in heterologous systems have found versatile utility in the design of DNA constructs that have enabled us to understand the finer details of transposition mechanisms, and also allowed the use of transposon-based tools for functional genomics. This chapter traces the role of marker traits and marker genes (endogenous and transgenic) in various plant systems, and their contributions to the advancement of transposon biology over the past several decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones RN (2005) McClintock’s controlling elements: the full story. Cytogenet Genome Res 109:90–103

    Article  PubMed  CAS  Google Scholar 

  2. Kolkman JM, Conrad LJ, Farmer PR et al (2005) Distribution of activator (Ac) throughout the maize genome for use in regional mutagenesis. Genetics 169:981–995

    Article  PubMed  CAS  Google Scholar 

  3. Bancroft I, Bhatt AM, Sjodin C et al (1992) Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Mol Gen Genet 233:449–461

    Article  PubMed  CAS  Google Scholar 

  4. Dean C, Sjodin C, Bancroft I et al (1991) Development of an efficient transposon tagging system in Arabidopsis thaliana. Symp Soc Exp Biol 45:63–75

    PubMed  CAS  Google Scholar 

  5. Fedoroff NV, Smith DL (1993) A versatile system for detecting transposition in Arabidopsis. Plant J 3:273–289

    Article  PubMed  CAS  Google Scholar 

  6. Sundaresan V, Springer P, Volpe T et al (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810

    Article  PubMed  CAS  Google Scholar 

  7. Grevelding C, Becker D, Kunze R et al (1992) High rates of Ac/Ds germinal transposition in Arabidopsis suitable for gene isolation by insertional mutagenesis. Proc Natl Acad Sci USA 89:6085–6089

    Article  PubMed  CAS  Google Scholar 

  8. Chuck G, Robbins T, Nijjar C et al (1993) Tagging and cloning of a Petunia flower color gene with the maize transposable element activator. Plant Cell 5:371–378

    PubMed  CAS  Google Scholar 

  9. Meissner R, Chague V, Zhu Q et al (2000) Technical advance: a high throughput system for transposon tagging and promoter trapping in tomato. Plant J 22:265–274

    Article  PubMed  CAS  Google Scholar 

  10. Chin HG, Choe MS, Lee SH et al (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19:615–623

    Article  PubMed  CAS  Google Scholar 

  11. Izawa T, Ohnishi T, Nakano T et al (1997) Transposon tagging in rice. Plant Mol Biol 35:219–229

    Article  PubMed  CAS  Google Scholar 

  12. McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol 16:13–47

    Article  PubMed  CAS  Google Scholar 

  13. Greenblatt IM, Brink RA (1962) Twin mutations in medium variegated pericarp maize. Genetics 47:489–501

    PubMed  CAS  Google Scholar 

  14. Greenblatt IM (1984) A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, modulator, in maize. Genetics 108:471–485

    PubMed  CAS  Google Scholar 

  15. Rhoades MM (1938) Effect of the Dt gene on the mutability of the a(1) allele in maize. Genetics 23:377–397

    PubMed  CAS  Google Scholar 

  16. Nuffer MG (1955) Dosage effect of multiple Dt loci on mutation of a in the maize endosperm. Science 121:399–400

    Article  PubMed  CAS  Google Scholar 

  17. Brink RA, Nilan RA (1952) The relation between light variegated and medium variegated pericarp in maize. Genetics 37:519–544

    PubMed  CAS  Google Scholar 

  18. Barclay PC, Brink RA (1954) The relation between modulator and activator in maize. Proc Natl Acad Sci USA 40:1118–1126

    Article  PubMed  CAS  Google Scholar 

  19. Peterson PA (1953) A mutable pale green locus in maize. Genetics 38:682–683

    Google Scholar 

  20. McClintock B (1954) Mutations in maize and chromosomal aberrations in neurospora. Carnegie Inst Wash Yr Bk 53:254–260

    Google Scholar 

  21. Peterson PA (1965) Relationship between the Sp, and En control systems in maize. Am Nat 99:391–398

    Article  Google Scholar 

  22. Zhennan X, Dooner HK (2005) Mx-rMx, a family of interacting transposons in the growing hAT superfamily of maize. Plant Cell 17:375–388

    Article  Google Scholar 

  23. Robertson DS (1978) Characterization of a mutator system in maize. Mutat Res 51:21–28

    Article  Google Scholar 

  24. Tan BC, Chen Z, Shen Y et al (2011) Identification of an active new mutator transposable element in maize. G3 (Bethesda) 1:293–302

    Article  CAS  Google Scholar 

  25. Iida S, Meyer J, Arber W (1983) Prokaryotic IS elements. In: Shapiro JA (ed) Mobile genetic elements. Academic, New York, pp 159–221

    Google Scholar 

  26. Heffron F (1983) Tn3 and its relatives. In: Shapiro JA (ed) Mobile genetic elements. Academic, New York, pp 223–226

    Google Scholar 

  27. Roeder GS, Fink GG (1983) Transposobale elements in yeast. In: Shapiro JA (ed) Mobile genetic elements. Academic, New York, pp 300–332

    Google Scholar 

  28. Rubin GM (1983) Dispersed repetitive DNAs in drosophila. In: Shapiro JA (ed) Mobile genetic elements. Academic, New York, pp 329–336

    Google Scholar 

  29. Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242

    Article  PubMed  CAS  Google Scholar 

  30. Schwarz-Sommer Z, Gierl A, Klösgen RB et al (1984) The Spm (En) transposable element controls the excision of a 2-kb DNA insert at the wx allele of Zea mays. EMBO J 3:1021–1028

    PubMed  CAS  Google Scholar 

  31. Pereira A, Schwarz-Sommer Z, Gierl A et al (1985) Genetic and molecular analysis of the enhancer (En) transposable element system of Zea mays. EMBO J 4:17–23

    PubMed  CAS  Google Scholar 

  32. Pereira A, Cuypers H, Gierl A et al (1986) Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J 5:835–841

    PubMed  CAS  Google Scholar 

  33. McClintock B (1956) Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 21:197–216

    Article  PubMed  CAS  Google Scholar 

  34. McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38:579–599

    PubMed  CAS  Google Scholar 

  35. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355, 326 Zhang et al

    Article  PubMed  CAS  Google Scholar 

  36. McClintock B (1949) Mutable loci in maize. Carnegie Inst Wash Yr Bk 48:142–154, 29

    Google Scholar 

  37. McClintock B (1953) Mutation in maize. Carnegie Inst Wash Yr Bk 52:227–237

    Google Scholar 

  38. McClintock B (1948) Mutable loci in maize. Carnegie Inst Wash Yr Bk 47:155–169

    Google Scholar 

  39. McClintock B (1952) Mutable loci in maize. Carnegie Inst Wash Yr Bk 51:212–219

    Google Scholar 

  40. Weil CF, Wessler SR (1993) Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell 5:515–522

    PubMed  CAS  Google Scholar 

  41. Huang JT, Dooner HK (2008) Macrotransposition and other complex chromosomal restructuring in maize by closely linked transposons in direct orientation. Plant Cell 20:2019–2032

    Article  PubMed  CAS  Google Scholar 

  42. Martínez-Férez IM, Dooner HK (1997) Sesqui-Ds, the chromosome-breaking insertion at bz-m1, links double Ds to the original Ds element. Mol Gen Genet 255:580–586

    Article  PubMed  Google Scholar 

  43. Dooner HK, Belachew A (1991) Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics 129:855–862

    PubMed  CAS  Google Scholar 

  44. Ralston E, English J, Dooner HK (1989) Chromosome-breaking structure in maize involving a fractured Ac element. Proc Natl Acad Sci USA 86:9451–9455

    Article  PubMed  CAS  Google Scholar 

  45. Zhang J, Peterson T (1999) Genome rearrangements by nonlinear transposons in maize. Genetics 153:1403–1410

    PubMed  CAS  Google Scholar 

  46. Zhang J, Peterson T (2005) A segmental deletion series generated by sister-chromatid transposition of Ac transposable elements in maize. Genetics 171:333–344

    Article  PubMed  CAS  Google Scholar 

  47. Zhang J, Peterson T (2004) Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics 167:1929–1937

    Article  PubMed  CAS  Google Scholar 

  48. Zhang J, Yu C, Pulletikurti V et al (2009) Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes Dev 23:755–765

    Article  PubMed  CAS  Google Scholar 

  49. Zhang J, Zhang F, Peterson T (2006) Transposition of reversed Ac element ends generates novel chimeric genes in maize. PLoS Genet 2:e164

    Article  PubMed  Google Scholar 

  50. Yu C, Zhang J, Pulletikurti V et al (2010) Spatial configuration of transposable element Ac termini affects their ability to induce chromosomal breakage in maize. Plant Cell 22:744–754

    Article  PubMed  CAS  Google Scholar 

  51. Pulletikurti V, Yu C, Zhang J et al (2009) Cytological evidence that alternative transposition by Ac elements causes reciprocal translocations and inversions in Zea mays L. Maydica 54:457–462

    Google Scholar 

  52. Neuffer MG (1995) Chromosome breaking sites for genetic analysis in maize. Maydica 40:99–116

    Google Scholar 

  53. Neuffer MG (2010) Chromosome breaking Ds sites in maize, revisited. Part I, background, methods, Description, Maize Genet Coop Newsl 84. http://www.agron.missouri.edu/mnl/84/PDF/54neuffer.pdf

    Google Scholar 

  54. Wienand U, Sommer H, Schwarz Z et al (1982) A general method to identify plant structural genes among genomic DNA clones using transposable element induced mutations. Mol Gen Genet 187:195–201

    Article  CAS  Google Scholar 

  55. Bonas U, Sommer H, Saedler H (1984) The 17-kb Tam1 element of Antirrhinum majus induces a 3-bp duplication upon integration into the chalcone synthase gene. EMBO J 3:1015–1019

    PubMed  CAS  Google Scholar 

  56. Sommer H, Carpenter R, Harrison BJ, Saedler H (1985) The transposable element Tam3 of Antirrhinum majus generates a novel type of sequence alterations upon excision. Mol Gen Genet 199:225–231

    Article  CAS  Google Scholar 

  57. Upadhyaya KC, Hans S, Hans S, Enno K, Heinz S, Heinz S (1985) The paramutagenic line niv-44 has a 5 kb insert, Tam 2, in the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet 199:201–207

    Article  CAS  Google Scholar 

  58. Coen ES, Carpenter R, Martin C (1986) Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47:285–296

    Article  PubMed  CAS  Google Scholar 

  59. Chopra S, Brendel V, Zhang J, Axtell JD, Peterson T (1999) Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc Natl Acad Sci USA 96:15330–15335

    Article  PubMed  CAS  Google Scholar 

  60. Snowden KC, Napoli CA (1998) Psl: a novel Spm-like transposable element from Petunia hybrida. Plant J 14:43–54

    Article  PubMed  CAS  Google Scholar 

  61. Gerats AG, Huits H, Vrijlandt E, Maraña C, Souer E, Beld M (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of petunia. Plant Cell 2:1121–1128

    PubMed  CAS  Google Scholar 

  62. Inagaki Y, Hisatomi Y, Suzuki T, Kasahara K, Iida S (1994) Isolation of a suppressor-mutator/enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Plant Cell 6:375–383

    PubMed  CAS  Google Scholar 

  63. Tsay YF, Frank MJ, Page T, Dean C, Crawford NM (1993) Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science 260:342–344

    Article  PubMed  CAS  Google Scholar 

  64. Pouteau S, Spielmann A, Meyer C, Grandbastien MA, Caboche M (1991) Effects of Tnt1 tobacco retrotransposon insertion on target gene transcription. Mol Gen Genet 228:233–239

    Article  PubMed  CAS  Google Scholar 

  65. Miller SM, Schmitt R, Kirk DL (1993) Jordan, an active Volvox transposable element similar to higher plant transposons. Plant Cell 5:1125–1138

    PubMed  CAS  Google Scholar 

  66. Sundar IK, Sakthivel N (2008) Advances in selectable marker genes for plant transformation. J Plant Physiol 165:1698–1716

    Article  PubMed  CAS  Google Scholar 

  67. Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701:1–35

    Article  PubMed  CAS  Google Scholar 

  68. Jones JD, Carland FM, Maliga P, Dooner HK (1989) Visual detection of transposition of the maize element activator (ac) in tobacco seedlings. Science 244:204–207

    Article  PubMed  CAS  Google Scholar 

  69. Jones JD, Shlumukov L, Carland F et al (1992) Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1:285–297

    Article  PubMed  CAS  Google Scholar 

  70. Aarts MG, Dirkse WG, Stiekema WJ, Pereira A (1993) Transposon tagging of a male sterility gene in Arabidopsis. Nature 363:715–717

    Article  PubMed  CAS  Google Scholar 

  71. Long D, Martin M, Sundberg E et al (1993) The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion. Proc Natl Acad Sci USA 90:10370–10374

    Article  PubMed  CAS  Google Scholar 

  72. Krishnaswamy L, Zhang J, Peterson T (2008) Reversed end Ds element: a novel tool for chromosome engineering in Arabidopsis. Plant Mol Biol 68:399–411

    Article  PubMed  CAS  Google Scholar 

  73. Panjabi P, Burma PK, Pental D (2006) Use of the transposable elements Ac/Ds in conjunction with Spm/dSpm for gene tagging allows extensive genome coverage with a limited number of starter lines: functional analysis of a four-element system in Arabidopsis thaliana. Mol Genet Genomics 276:533–543

    Article  PubMed  CAS  Google Scholar 

  74. Kumar CS, Wing RA, Sundaresan V (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44:879–892

    Article  PubMed  CAS  Google Scholar 

  75. Sundaresan V (1996) Horizontal spread of transposon mutagenesis: new uses for old elements. Trends Plant Sci 1:184–190

    Article  Google Scholar 

  76. Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020

    PubMed  CAS  Google Scholar 

  77. Acosta-García G, Autran D, Vielle-Calzada JP (2004) Enhancer detection and gene trapping as tools for functional genomics in plants. Methods Mol Biol 267:397–414

    PubMed  Google Scholar 

  78. Athma P, Peterson T (1991) Ac induces homologous recombination at the maize P locus. Genetics 128:163–173

    PubMed  CAS  Google Scholar 

  79. Xiao YL, Peterson T (2000) Intrachromosomal homologous recombination in Arabidopsis induced by a maize transposon. Mol Gen Genet 263:22–29

    Article  PubMed  CAS  Google Scholar 

  80. Courage-Tebbe U, Doring HP, Fedoroff N, Starlinger P (1983) The controlling element Ds at the Shrunken locus in Zea mays: structure of the unstable sh-m5933 allele and several revertants. Cell 34:383–393

    Article  PubMed  CAS  Google Scholar 

  81. Burr B, Burr FA (1982) Ds controlling elements of maize at the shrunken locus are large and dissimilar insertions. Cell 29:977–986

    Article  PubMed  CAS  Google Scholar 

  82. Chaleff D, Mauvais J, McCormick S et al (1981) Controlling elements in maize. Carnegie Inst Wash Yr Bk 80:158–174

    Google Scholar 

  83. Doring HP, Nelsen-Salz B, Garber R, Tillman E (1981) Double Ds elements are involved in specific chromosome breakage. Mol Gen Genet 219:299–305

    Google Scholar 

  84. Weck E, Courage U, Doring HP et al (1984) Analysis of sh-m6233, a mutation induced by the transposable element Ds in the sucrose synthase gene of Zea mays. EMBO J 3:1713–1716

    PubMed  CAS  Google Scholar 

  85. Yu C, Zhang J, Peterson T (2011) Genome rearrangements in maize induced by alternative transposition of reversed ac/ds termini. Genetics 188:59–67

    Article  PubMed  CAS  Google Scholar 

  86. Zhang J, Yu C, Krishnaswamy L, Peterson T (2011) Transposable elements as catalysts for chromosome rearrangements. Methods Mol Biol 701:315–326

    Article  PubMed  CAS  Google Scholar 

  87. English J, Harrison K, Jones JD (1993) A genetic analysis of DNA sequence requirements for dissociation state I activity in tobacco. Plant Cell 5:501–514

    PubMed  CAS  Google Scholar 

  88. Yu C, Han F, Zhang J, Birchler J, Peterson T (2012) A transgenic system for generation of transposon Ac/Ds-induced chromosome rearrangements in rice. Theor Appl Genet 125(7):1449–1462. doi: 10.1007/s00122-012-1925-4

    Google Scholar 

  89. Zhang J, Peterson T, Peterson P (2009) Transposons Ac/Ds, En/Spm and their relatives in maize. In: Bennetzen J, Hake S (eds) Maize handbook. Springer, New York, pp 251–276

    Chapter  Google Scholar 

  90. Chen J, Greenblatt IM, Dellaporta SL (1987) Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117:109–116

    PubMed  CAS  Google Scholar 

  91. Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227:707–711

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Krishnaswamy, L., Peterson, T. (2013). Survey of Natural and Transgenic Gene Markers Used to Monitor Transposon Activity. In: Peterson, T. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 1057. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-568-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-568-2_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-567-5

  • Online ISBN: 978-1-62703-568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics