Skip to main content

Use of Next Generation Sequencing (NGS) Technologies for the Genome-Wide Detection of Transposition

  • Protocol
  • First Online:
Plant Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1057))

Abstract

Plant transposable elements are ubiquitous in eukaryotes. Their propensity to densely populate the genomes of many plants and animal species has put them in the focus of both structural and functional genomics. Although a number of bioinformatic software have been recently developed for the annotation of TEs in sequenced genomes, there are very few computational tools strictly dedicated to the identification of active TEs using genome-wide approaches. In this paper, we describe SearchTESV, a pipeline that we have developed to detect Transposable Elements-associated structural variants (TEASVs) using Next Generation Sequencing (NGS) technologies.

Moaine Elbaidouri and Cristian Chaparro contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennetzen JL (2007) Patterns in grass genome evolution. Curr Opin Plant Biol 10:176–181

    Article  PubMed  CAS  Google Scholar 

  2. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  3. Philippe R et al (2012) Whole Genome Profiling provides a robust framework for physical mapping and sequencing in the highly complex and repetitive wheat genome. BMC Genomics 13:47

    Article  PubMed  CAS  Google Scholar 

  4. Cao J et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963

    Article  PubMed  CAS  Google Scholar 

  5. Slotkin RK, Martienssen RA (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  PubMed  CAS  Google Scholar 

  6. Mirouze M et al (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430

    Article  PubMed  CAS  Google Scholar 

  7. Tsugane K et al (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J Jan 45:46–57

    Article  CAS  Google Scholar 

  8. ElBaidouri M, Panaud O (2012) Genome-wide analysis of transposition using Next Generation Sequencing technologies. Top Curr Genet 24:59–70

    Article  Google Scholar 

  9. Sabot F et al (2011) Transpositional landscape of rice genome revealed by Paired-End Mapping of high-throughput resequencing data. Plant J 66:241–246

    Article  PubMed  CAS  Google Scholar 

  10. Langmead B et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  Google Scholar 

  11. Jurka J et al (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  PubMed  CAS  Google Scholar 

  12. Chaparro C et al (2007) RetrOryza: a database of the rice LTR-retrotransposons. Nucleic Acids Res 35:D66–D70

    Article  PubMed  CAS  Google Scholar 

  13. Du J et al (2010) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics 11:113

    Article  PubMed  Google Scholar 

  14. Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:360–363

    Article  Google Scholar 

  15. Siguier P et al (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by CNRS and the University of Perpignan Via Domitia. Moaine Elbaidouri is funded by a joint CNRS/Région Languedoc Roussillon PhD grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Elbaidouri, M., Chaparro, C., Panaud, O. (2013). Use of Next Generation Sequencing (NGS) Technologies for the Genome-Wide Detection of Transposition. In: Peterson, T. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 1057. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-568-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-568-2_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-567-5

  • Online ISBN: 978-1-62703-568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics