Skip to main content

Analysis of DNA-Protein Interactions Using PAGE: Band-Shift Assays

  • Protocol
  • First Online:
DNA Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1054))

Abstract

The band-shift assay using polyacrylamide gel electrophoresis is a powerful technique used to investigate DNA–protein interactions. The basis of the method is the separation of free DNA from DNA–protein complexes by virtue of differences in charge, size, and shape. The band-shift assay can be used to determine thermodynamic and kinetic binding constants and also to analyze the composition and stoichiometries of DNA–protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060

    Article  PubMed  CAS  Google Scholar 

  2. Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525

    Article  PubMed  CAS  Google Scholar 

  3. Powell LM, Dryden DT, Willcock DF, Pain RH, Murray NE (1993) DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-l-methionine. J Mol Biol 234:60–71

    Article  PubMed  CAS  Google Scholar 

  4. Powell LM, Zur Lage PI, Prentice DR, Senthinathan B, Jarman AP (2004) The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites. Mol Cell Biol 24:9517–9526

    Article  PubMed  CAS  Google Scholar 

  5. Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V (2012) DNA–protein interactions: methods for detection and analysis. Mol Cell Biochem 365:279–299

    Article  PubMed  CAS  Google Scholar 

  6. Henriksson-Peltola P, Sehlen W, Haggard-Ljungquist E (2007) Determination of the DNA-binding kinetics of three related but heteroimmune bacteriophage repressors using EMSA and SPR analysis. Nucleic Acids Res 35:3181–3191

    Article  PubMed  CAS  Google Scholar 

  7. Buratowski S, Chodosh LA (2001) Mobility shift DNA-binding assay using gel electrophoresis. In: Ausubel FM et al (eds) Current protocols in molecular biology, 36: 12.2.1–12.2.11, John Wiley and Sons inc.

    Google Scholar 

  8. Lane D, Prentki P, Chandler M (1992) Use of gel retardation to analyze protein–nucleic acid interactions. Microbiol Rev 56:509–528

    PubMed  CAS  Google Scholar 

  9. Jiang D, Jarrett HW, Haskins WE (2009) Methods for proteomic analysis of transcription factors. J Chromatogr 1216:6881–6889

    Article  CAS  Google Scholar 

  10. zur Lage PI, Powell LM, Prentice DR, McLaughlin P, Jarman AP (2004) EGF receptor signaling triggers recruitment of Drosophila sense organ precursors by stimulating proneural gene autoregulation. Dev Cell 7:687–696

    Article  PubMed  CAS  Google Scholar 

  11. Powell LM, Murray NE (1995) S-adenosyl methionine alters the DNA contacts of the EcoKI methyltransferase. Nucleic Acids Res 23:967–974

    Article  PubMed  CAS  Google Scholar 

  12. Powell LM, Dryden DT, Murray NE (1998) Sequence-specific DNA binding by EcoKI, a type IA DNA restriction enzyme. J Mol Biol 283:963–976

    Article  PubMed  CAS  Google Scholar 

  13. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat Protoc 2:1849–1861

    Article  PubMed  CAS  Google Scholar 

  14. Kothinti R, Tabatabai NM, Petering DH (2011) Electrophoretic mobility shift assay of zinc finger proteins: competition for Zn(2+) bound to Sp1 in protocols including EDTA. J Inorg Biochem 105:569–576

    Article  PubMed  CAS  Google Scholar 

  15. Chen J, Villanueva N, Rould MA, Morrical SW (2010) Insights into the mechanism of Rad51 recombinase from the structure and properties of a filament interface mutant. Nucleic Acids Res 38:4889–4906

    Article  PubMed  CAS  Google Scholar 

  16. Carey MF, Peterson CL, Smale ST (2012) Experimental strategies for the identification of DNA-binding proteins. Cold Spring Harb Protoc 2012:18–33

    PubMed  Google Scholar 

  17. Cutler PE (2004) Protein purification protocols. Methods Mol Biol (Clifton, NJ) 244: 1–496

    Google Scholar 

  18. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harb Laboratory Press, NewYork

    Google Scholar 

  19. Kurien BT, Scofield RH (2009) Introduction to protein blotting. Methods Mol Biol (Clifton, NJ) 536:9–22

    Article  CAS  Google Scholar 

  20. Forwood JK, Jans DA (2006) Quantitative analysis of DNA-protein interactions using double-labeled native gel electrophoresis and fluorescence-based imaging. Electrophoresis 27:3166–3170

    Article  PubMed  CAS  Google Scholar 

  21. Pagano JM, Clingman CC, Ryder SP (2011) Quantitative approaches to monitor protein–nucleic acid interactions using fluorescent probes. RNA 17:14–20

    Article  PubMed  CAS  Google Scholar 

  22. Revzin A (1989) Gel electrophoresis assays for DNA–protein interactions. Biotechniques 7:346–355

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the help of Professors Noreen Murray and Andrew Jarman in whose laboratories this work took place. Thanks are also due to my colleagues in the Murray and Jarman laboratories, in particular David Dryden, Laurie Cooper, and Petra zur Lage for their help and advice with protein purification.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Powell, L. (2013). Analysis of DNA-Protein Interactions Using PAGE: Band-Shift Assays. In: Makovets, S. (eds) DNA Electrophoresis. Methods in Molecular Biology, vol 1054. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-565-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-565-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-564-4

  • Online ISBN: 978-1-62703-565-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics