Skip to main content

DNA Electrophoresis: Historical and Theoretical Perspectives

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1054))

Abstract

The technique of gel electrophoresis is now firmly established as a routine laboratory method for analyzing DNA. Here, we describe the development of the methodology as well as a brief explanation of how the technique works. There is a short introduction to pulsed-field agarose gel electrophoresis, which represents a critical advancement in the method that facilitates the analysis of very large fragments of DNA. Finally, theoretical considerations are included.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tiselius A (1937) Electrophoresis of serum globulin. Biochem J 31:313–317

    PubMed  CAS  Google Scholar 

  2. Grabar P, Williams CA (1953) Method permitting the combined study of the electrophoretic and the immunochemical properties of protein mixtures; application to blood serum. Biochim Biophys Acta 10:193–194

    Article  PubMed  CAS  Google Scholar 

  3. Thorne HV (1966) Electrophoretic separation of polyoma virus DNA from host cell DNA. Virology 29:234–239

    Article  PubMed  CAS  Google Scholar 

  4. Aaij C, Borst P (1972) The gel electrophoresis of DNA. Biochim Biophys Acta 269:192–200

    Article  PubMed  CAS  Google Scholar 

  5. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Article  PubMed  CAS  Google Scholar 

  6. Brody JR, Kern SE (2004) History and principles of conductive media for standard DNA electrophoresis. Anal Biochem 333:1–13

    Article  PubMed  CAS  Google Scholar 

  7. Goering RV (2010) Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10:866–875

    Article  PubMed  CAS  Google Scholar 

  8. Carle GF, Olson MV (1984) Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res 12:5647–5664

    Article  PubMed  CAS  Google Scholar 

  9. Gardiner K, Laas W, Patterson D (1986) Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Somat Cell Mol Genet 12:185–195

    Article  PubMed  CAS  Google Scholar 

  10. Carle GF, Frank M, Olson MV (1986) Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232:65–68

    Article  PubMed  CAS  Google Scholar 

  11. Chu G, Vollrath D, Davis RW (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582–1585

    Article  PubMed  CAS  Google Scholar 

  12. DeGennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579

    Article  Google Scholar 

  13. Lumpkin OJ, Zimm BH (1982) Mobility of DNA in electrophoresis. Biopolymers 21:2315–2316

    Article  PubMed  CAS  Google Scholar 

  14. Lerman LS, Frisch HL (1982) Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21:995–997

    Article  PubMed  CAS  Google Scholar 

  15. Slater GW, Noolandi J (1985) New biased-reptation model for charged polymers. Phys Rev Lett 55:1579–1582

    Article  PubMed  CAS  Google Scholar 

  16. Edmondson SP, Gray DM (1984) Analysis of the electrophoretic properties of double-stranded DNA and RNA in agarose gels at a finite voltage gradient. Biopolymers 23:2725–2742

    Article  PubMed  CAS  Google Scholar 

  17. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys 51:924–933

    Article  CAS  Google Scholar 

  18. Zimm BH (1991) “Lakes-straits” model of field-inversion gel electrophoresis of DNA. J Chem Phys 94:2187–2206

    Article  CAS  Google Scholar 

  19. Viovy J-L (2000) Electrophoresis of DNA and other polyelectrolytes: physical mechanisms. Rev Mod Phys 72:813–872

    Article  CAS  Google Scholar 

  20. Slater GW (2009) DNA gel electrophoresis: the reptation model(s). Electrophoresis 30:S181–S187

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Roberts, G.A., Dryden, D.T.F. (2013). DNA Electrophoresis: Historical and Theoretical Perspectives. In: Makovets, S. (eds) DNA Electrophoresis. Methods in Molecular Biology, vol 1054. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-565-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-565-1_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-564-4

  • Online ISBN: 978-1-62703-565-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics