Skip to main content

Structure, Regulation, and Pharmacological Modulation of PP2A Phosphatases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1053))

Abstract

Protein phosphatases of the type 2A family (PP2A) represent a major fraction of cellular Ser/Thr phosphatase activity in any given human tissue. In this review, we describe how the holoenzymic nature of PP2A and the existence of several distinct PP2A composing subunits allow for the generation of multiple structurally and functionally different PP2A complexes, explaining why PP2A is involved in the regulation of so many diverse cell biological and physiological processes. Moreover, in human disease, most notably in several cancers and Alzheimer’s Disease, PP2A expression and/or activity have been found significantly decreased, underscoring its important functions as a major tumor suppressor and tau phosphatase. Hence, several recent preclinical studies have demonstrated that pharmacological restoration of PP2A activity, as well as pharmacological PP2A inhibition, under certain conditions, may be of significant future therapeutic value.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Moorhead GB, De Wever V, Templeton G et al (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417:401–409

    Article  PubMed  CAS  Google Scholar 

  2. Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353:417–439

    Article  PubMed  CAS  Google Scholar 

  3. Eichhorn PJ, Creyghton MP, Bernards R (2009) Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 1795:1–15

    PubMed  CAS  Google Scholar 

  4. Sents W, Ivanova E, Lambrecht C et al (2013) The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 280:644–661

    PubMed  Google Scholar 

  5. Fellner T, Lackner DH, Hombauer H et al (2003) A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes Dev 17:2138–2150

    Article  PubMed  CAS  Google Scholar 

  6. Hombauer H, Weismann D, Mudrak I et al (2007) Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol 5:e155

    Article  PubMed  CAS  Google Scholar 

  7. Janssens V, Longin S, Goris J (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 33:113–121

    Article  PubMed  CAS  Google Scholar 

  8. Chen J, Martin BL, Brautigan DL (1992) Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257:1261–1264

    Article  PubMed  CAS  Google Scholar 

  9. Schmitz MH, Held M, Janssens V et al (2010) Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells. Nat Cell Biol 12:886–893

    Article  PubMed  CAS  Google Scholar 

  10. De Baere I, Derua R, Janssens V et al (1999) Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue. Biochemistry 38:16539–16547

    Article  PubMed  CAS  Google Scholar 

  11. Ogris E, Du X, Nelson KC et al (1999) A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. J Biol Chem 274:14382–14391

    Article  PubMed  CAS  Google Scholar 

  12. Longin S, Jordens J, Martens E et al (2004) An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator. Biochem J 380:111–119

    Article  PubMed  CAS  Google Scholar 

  13. Jordens J, Janssens V, Longin S et al (2006) The protein phosphatase 2A phosphatase activator is a novel peptidyl-prolyl cis/trans-isomerase. J Biol Chem 281: 6349–6357

    Article  PubMed  CAS  Google Scholar 

  14. Leulliot N, Vicentini G, Jordens J et al (2006) Crystal structure of the PP2A phosphatase activeator: implications for its PP2A-specific PPIase activity. Mol Cell 23:413–424

    Article  PubMed  CAS  Google Scholar 

  15. Stanevich V, Jiang L, Satyshur KA et al (2011) The structural basis for tight control of PP2A methylation and function by LCMT-1. Mol Cell 41:331–342

    Article  PubMed  CAS  Google Scholar 

  16. Groves MR, Hanlon N, Turowski P et al (1999) The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96:99–110

    Article  PubMed  CAS  Google Scholar 

  17. Xing Y, Xu Y, Chen Y et al (2006) Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127:341–353

    Article  PubMed  CAS  Google Scholar 

  18. Cho US, Xu W (2006) Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445:53–57

    Article  PubMed  CAS  Google Scholar 

  19. Xu Y, Xing Y, Chen Y et al (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127:1239–1251

    Article  PubMed  CAS  Google Scholar 

  20. Xu Y, Chen Y, Zhang P et al (2008) Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell 31:873–885

    Article  PubMed  CAS  Google Scholar 

  21. Xu Z, Cetin B, Anger M et al (2009) Structure and function of the PP2A-shugoshin interaction. Mol Cell 35:426–441

    Article  PubMed  CAS  Google Scholar 

  22. Grinthal A, Adamovic I, Weiner B et al (2010) PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci USA 107:2467–2472

    Article  PubMed  CAS  Google Scholar 

  23. Mayer RE, Hendrix P, Cron P et al (1991) Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry 30:3589–3597

    Article  PubMed  CAS  Google Scholar 

  24. Strack S, Chang D, Zaucha JA et al (1999) Cloning and characterization of B delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Lett 460:462–466

    Article  PubMed  CAS  Google Scholar 

  25. Strack S, Zaucha JA, Ebner FF et al (1998) Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol 392:515–527

    Article  PubMed  CAS  Google Scholar 

  26. Sontag E, Nunbhakdi-Craig V, Bloom GS et al (1995) A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J Cell Biol 128:1131–1144

    Article  PubMed  CAS  Google Scholar 

  27. Turowski P, Myles T, Hemmings BA et al (1999) Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol Biol Cell 10:1997–2015

    Article  PubMed  CAS  Google Scholar 

  28. Dagda K, Zaucha JA, Wadzinski BE et al (2003) A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem 278:24976–24985

    Article  PubMed  CAS  Google Scholar 

  29. Zolnierowicz S, Csortos C, Bondor J et al (1994) Diversity in the regulatory B-subunits of protein phosphatase 2A: identification of a novel isoform highly expressed in brain. Biochemistry 33:11858–11867

    Article  PubMed  CAS  Google Scholar 

  30. Hendrix P, Mayer-Jackel RE, Cron P et al (1993) Structure and expression of a 72-kDa regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. J Biol Chem 268:15267–15276

    PubMed  CAS  Google Scholar 

  31. Takahashi M, Shibata H, Shimakawa M et al (1999) Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the golgi apparatus. J Biol Chem 274:17267–17274

    Article  PubMed  CAS  Google Scholar 

  32. Zwaenepoel K, Louis JV, Goris J et al (2008) Diversity in genomic organisation, developmental regulation and distribution of the murine PR72/B″ subunits of protein phosphatase 2A. BMC Genomics 9:393

    Article  PubMed  CAS  Google Scholar 

  33. Zwaenepoel K, Goris J, Erneux C et al (2010) Protein phosphatase 2A PR130/B″α1 subunit binds to the SH2 domain-containing inositol polyphosphate 5-phosphatase 2 and prevents epidermal growth factor (EGF) induced EGF receptor degradation sustaining EGF mediated signaling. FASEB J 24:538–547

    Article  PubMed  CAS  Google Scholar 

  34. Schiebel K, Meder J, Rump A et al (2000) Elevated DNA sequence diversity in the genomic region of the phosphatase PPP2R3L gene in the human pseudoautosomal region. Cytogenet Cell Genet 91:224–230

    Article  PubMed  CAS  Google Scholar 

  35. Yan Z, Fedorov SA, Mumby MC et al (2000) PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Mol Cell Biol 20:1021–1029

    Article  PubMed  CAS  Google Scholar 

  36. Kono Y, Maeda K, Kuwahara K et al (2002) MCM3-binding GANP DNA-primase is associated with a novel phosphatase component G5PR. Genes Cells 7:821–834

    Article  PubMed  CAS  Google Scholar 

  37. Foley EA, Maldonado M, Kapoor TM (2011) Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat Cell Biol 13:1265–1271

    Article  PubMed  CAS  Google Scholar 

  38. McCright B, Rivers AM, Audlin S et al (1996) The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 271:22081–22089

    Article  PubMed  CAS  Google Scholar 

  39. Ruvolo PP, Clark W, Mumby M et al (2002) A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem 277:22847–22852

    Article  PubMed  CAS  Google Scholar 

  40. Martens E, Stevens I, Janssens V et al (2004) Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B′ regulatory subunits of protein phosphatase 2A in mice. J Mol Biol 336:971–986

    Article  PubMed  CAS  Google Scholar 

  41. Ito A, Kataoka TR, Watanabe M et al (2000) A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J 19:562–571

    Article  PubMed  CAS  Google Scholar 

  42. Gigena MS, Ito A, Nojima H et al (2005) A B56 regulatory subunit of protein phosphatase 2A localizes to nuclear speckles in cardiomyocytes. Am J Physiol Heart Circ Physiol 289:H285–H294

    Article  PubMed  CAS  Google Scholar 

  43. Ito A, Koma Y, Sohda M et al (2003) Localization of the PP2A B56gamma regulatory subunit at the Golgi complex: possible role in vesicle transport and migration. Am J Pathol 162:479–489

    Article  CAS  PubMed  Google Scholar 

  44. Lee TY, Lai TY, Lin SC et al (2010) The B56gamma3 regulatory subunit of protein phosphatase 2A (PP2A) regulates S phase-specific nuclear accumulation of PP2A and the G1 to S transition. J Biol Chem 285:21567–21580

    Article  CAS  PubMed  Google Scholar 

  45. Tanabe O, Nagase T, Murakami T et al (1996) Molecular cloning of a 74-kDa regulatory subunit (B″ or delta) of human protein phosphatase 2A. FEBS Lett 379:107–111

    Article  CAS  PubMed  Google Scholar 

  46. Jin Z, Shi J, Saraf A et al (2009) The 48-kDa alternative translation isoform of PP2A:B56epsilon is required for Wnt signaling during midbrain-hindbrain boundary formation. J Biol Chem 284:7190–7200

    Article  PubMed  CAS  Google Scholar 

  47. Castets F, Rakitina T, Gaillard S et al (2000) Zinedin, SG2NA, and striatin are calmodulin-binding, WD repeat proteins principally expressed in the brain. J Biol Chem 275:19970–19977

    Article  PubMed  CAS  Google Scholar 

  48. Baillat G, Moqrich A, Castets F et al (2001) Molecular cloning and characterization of phocein, a protein found from the Golgi complex to dendritic spines. Mol Biol Cell 12:663–673

    Article  PubMed  CAS  Google Scholar 

  49. Gaillard S, Bartoli M, Castets F et al (2001) Striatin, a calmodulin-dependent scaffolding protein, directly binds caveolin-1. FEBS Lett 508:49–52

    Article  PubMed  CAS  Google Scholar 

  50. Healy AM, Zolnierowicz S, Stapleton AE et al (1991) CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol Cell Biol 11:5767–5780

    PubMed  CAS  Google Scholar 

  51. Pallas DC, Weller W, Jaspers S et al (1992) The third subunit of protein phosphatase 2A (PP2A), a 55-kilodalton protein which is apparently substituted for by T antigens in complexes with the 36- and 63-kilodalton PP2A subunits, bears little resemblance to T antigens. J Virol 66:886–893

    PubMed  CAS  Google Scholar 

  52. Schmidt K, Kins S, Schild A et al (2002) Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A. Eur J Neurosci 16:2039–2048

    Article  PubMed  Google Scholar 

  53. Wurzenberger C, Gehrlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12:469–482

    Article  CAS  PubMed  Google Scholar 

  54. Barr FA, Elliott PR, Gruneberg U (2011) Protein phosphatases and the regulation of mitosis. J Cell Sci 124:2323–2334

    Article  PubMed  CAS  Google Scholar 

  55. Janssens V, Rebollo A (2012) The role and therapeutic potential of Ser/Thr phosphatase PP2A in apoptotic signaling networks in human cancer cells. Curr Mol Med 12:268–287

    Article  PubMed  CAS  Google Scholar 

  56. Batut J, Schmierer B, Cao J et al (2008) Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signaling. Development 135:2927–2937

    Article  PubMed  CAS  Google Scholar 

  57. Kalev P, Simicek M, Vazquez I et al (2012) Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res 72(24):6414–6424

    Article  PubMed  CAS  Google Scholar 

  58. Torrent L, Ferrer I (2012) PP2A and Alzheimer disease. Curr Alzheimer Res 9:248–256

    Article  PubMed  CAS  Google Scholar 

  59. McCright B, Virshup DM (1995) Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem 270:26123–26128

    Article  PubMed  CAS  Google Scholar 

  60. Csortos C, Zolnierowicz S, Bako E et al (1996) High complexity in the expression of the B′ subunit of protein phosphatase 2A0. Evidence for the existence of at least seven novel isoforms. J Biol Chem 271:2578–2588

    Article  PubMed  CAS  Google Scholar 

  61. Tehrani MA, Mumby MC, Kamibayashi C (1996) Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. J Biol Chem 271:5164–5170

    Article  PubMed  CAS  Google Scholar 

  62. Zolnierowicz S, Van Hoof C, Andjelkovic N et al (1996) The variable subunit associated with protein phosphatase 2A0 defines a novel multimember family of regulatory subunits. Biochem J 317:187–194

    PubMed  CAS  Google Scholar 

  63. Tanabe O, Gomez GA, Nishito Y et al (1997) Molecular heterogeneity of the cDNA encoding a 74-kDa regulatory subunit (B″ or δ) of human protein phosphatase 2A. FEBS Lett 408:52–56

    Article  PubMed  CAS  Google Scholar 

  64. Yang J, Phiel C (2010) Functions of B56-containing PP2As in major developmental and cancer pathways. Life Sci 87:659–666

    Article  PubMed  CAS  Google Scholar 

  65. Walaas SI, Hemmings HC, Jr Greengard P et al (2011) Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Front Neuroanat 5:50

    Article  PubMed  CAS  Google Scholar 

  66. Janssens V, Goris J, Van Hoof C (2005) PP2A the expected tumor suppressor. Curr Opin Genet Dev 15:34–41

    Article  PubMed  CAS  Google Scholar 

  67. Arroyo JD, Hahn WC (2005) Involvement of PP2A in viral and cellular transformation. Oncogene 24:7746–7755

    Article  PubMed  CAS  Google Scholar 

  68. Arnold HK, Sears RC (2008) A tumor suppressor role for PP2A B56α through negative regulation of c-Myc and other key oncoproteins. Cancer Metastasis Rev 27:147–158

    Article  PubMed  CAS  Google Scholar 

  69. Westermarck J, Hahn WC (2008) Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med 14:152–160

    Article  CAS  Google Scholar 

  70. Voorhoeve PM, Hijmans EM, Bernards R (1999) Functional interaction between a novel protein phosphatase 2A regulatory subunit, PR59, and the retinoblastoma-related p107 protein. Oncogene 18:515–524

    Article  PubMed  CAS  Google Scholar 

  71. Stevens I, Janssens V, Martens E et al (2003) Identification and characterization of B″-subunits of protein phosphatase 2A in Xenopus laevis oocytes and adult tissues. Eur J Biochem 270:376–387

    Article  PubMed  CAS  Google Scholar 

  72. Janssens V, Jordens J, Stevens I et al (2003) Identification and functional analysis of two Ca2+-binding EF-hand motifs in the B″/PR72 subunit of protein phosphatase 2A. J Biol Chem 278:10697–10706

    Article  PubMed  CAS  Google Scholar 

  73. Davis AJ, Yan Z, Martinez B et al (2008) Protein phosphatase 2A is targeted to cell division control protein 6 by calcium-binding regulatory subunit. J Biol Chem 283:16104–16114

    Article  PubMed  CAS  Google Scholar 

  74. Kolupaeva V, Janssens V (2013) PP1 and PP2A phosphatases: cooperating partners in modulating retinoblastoma protein activation. FEBS J 280:627–643

    PubMed  Google Scholar 

  75. Moreno CS, Park S, Nelson K et al (2000) WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J Biol Chem 275:5257–5263

    Article  PubMed  CAS  Google Scholar 

  76. Goudreault M, D’Ambrosio LM, Kean MJ et al (2009) A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 8:157–171

    Article  PubMed  CAS  Google Scholar 

  77. Ribeiro PS, Josué F, Wepf A et al (2010) Combined functional genomic and proteomic approaches indentify a PP2A complex as a negative regulator of Hippo signalling. Mol Cell 39:521–534

    Article  PubMed  CAS  Google Scholar 

  78. Kean MJ, Ceccarelli DF, Goudreault M et al (2011) Structure-function analysis of core STRIPAK proteins: a signaling complex implicated in Golgi polarization. J Biol Chem 286:25065–25075

    Article  PubMed  CAS  Google Scholar 

  79. Hyodo T, Ito S, Hasegawa H et al (2012) Misshapen-like kinase 1 (MINK1) is a novel component of striatin-interacting phosphatase and kinase (STRIPAK) and is required for the completion of cytokinesis. J Biol Chem 287:25019–25029

    Article  PubMed  CAS  Google Scholar 

  80. Gu P, Qi X, Zhou Y et al (2012) Generation of Ppp2Ca and Ppp2Cb conditional null alleles in mouse. Genesis 50:429–436

    Article  PubMed  CAS  Google Scholar 

  81. Götz J, Probst A, Ehler E et al (1998) Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proc Natl Acad Sci USA 95:12370–12375

    Article  PubMed  Google Scholar 

  82. Ruediger R, Ruiz J, Walter G (2011) Human cancer-associated mutations in the Aα subunit of protein phosphatase 2A increase lung cancer incidence in Aα knock-in and knockout mice. Mol Cell Biol 31:3832–3844

    Article  PubMed  CAS  Google Scholar 

  83. Louis JV, Martens E, Borghgraef P et al (2011) Mice lacking phosphatase PP2A subunit PR61/B′delta (Ppp2r5d) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3beta. Proc Natl Acad Sci USA 108:6957–6962

    Article  PubMed  CAS  Google Scholar 

  84. Tadmouri A, Kiyonaka S, Barbado M et al (2012) Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J 31:3730–3744

    Article  PubMed  CAS  Google Scholar 

  85. Ahn JH, Sung JY, McAvoy T et al (2007) The B″/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A. Proc Natl Acad Sci USA 104:9876–9881

    Article  PubMed  CAS  Google Scholar 

  86. Dobrowsky RT, Kamibayashi C, Mumby MC et al (1993) Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268:15523–15530

    PubMed  CAS  Google Scholar 

  87. Mukhopadhyay A, Saddoughi SA, Song P et al (2009) Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J 23:751–763

    Article  PubMed  CAS  Google Scholar 

  88. Chen CL, Lin CF, Chiang CW (2006) Lithium inhibits ceramide- and etoposide-induced protein phosphatase 2A methylation, Bcl-2 dephosphorylation, caspase-2 activation, and apoptosis. Mol Pharmacol 70:510–517

    Article  PubMed  CAS  Google Scholar 

  89. Xu Z, Williams BRG (2000) The B56α regulatory subunit of protein phosphatase 2A is a target for regulation by double-stranded RNA-dependent protein kinase PKR. Mol Cell Biol 20:5285–5299

    Article  PubMed  CAS  Google Scholar 

  90. Letourneux C, Rocher G, Porteu F (2006) B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 25:727–738

    Article  PubMed  CAS  Google Scholar 

  91. Shouse GP, Nobumori Y, Panowicz MJ et al (2011) ATM-mediated phosphorylation activates the tumor-suppressive function of B56γ-PP2A. Oncogene 30:3755–3765

    Article  PubMed  CAS  Google Scholar 

  92. Margolis SS, Perry JA, Forester CM et al (2006) Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127:759–773

    Article  PubMed  CAS  Google Scholar 

  93. Usui H, Inoue R, Tanabe O et al (1998) Activation of protein phosphatase 2A by cAMP-dependent protein kinase-catalyzed phosphorylation of the 74-kDa B′δ regulatory subunit in vitro and identification of the phosphorylation sites. FEBS Lett 430:312–316

    Article  PubMed  CAS  Google Scholar 

  94. Ahn JH, McAvoy T, Rakhilin SV et al (2007) Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci USA 104:2979–2984

    Article  PubMed  CAS  Google Scholar 

  95. Dodge-Kafka KL, Bauman A, Mayer N et al (2010) cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3. J Biol Chem 285: 11078–11086

    Article  PubMed  CAS  Google Scholar 

  96. Ahn JH, Kim Y, Kim HS et al (2011) Protein kinase C-dependent dephosphorylation of tyrosine hydroxylase requires the B56δ heterotrimeric form of protein phosphatase 2A. PLoS One 6:e26292

    Article  PubMed  CAS  Google Scholar 

  97. Haesen D, Sents W, Ivanova E et al (2012) Cellular inhibitors of protein phosphatase PP2A in cancer. Biomed Res (India) 23:SI197–SI211

    Google Scholar 

  98. Matilla A, Radrizzani M (2005) The Anp32 family of proteins containing leucine-rich repeats. Cerebellum 4:7–18

    Article  PubMed  CAS  Google Scholar 

  99. Li M, Makkinje A, Damuni Z (1996) The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 271:11059–11062

    Article  PubMed  CAS  Google Scholar 

  100. Adachi Y, Pavlakis GN, Copeland TD (1994) Identification of in vivo phosphorylation sites of SET, a nuclear phosphoprotein encoded by the translocation breakpoint in acute undifferentiated leukemia. FEBS Lett 340:231–235

    Article  PubMed  CAS  Google Scholar 

  101. Nowak SJ, Pai CY, Corces VG (2003) Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster. Mol Cell Biol 23:6129–6138

    Article  PubMed  CAS  Google Scholar 

  102. ten Klooster JP, Leeuwen I, Scheres N et al (2007) Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET. EMBO J 26:336–345

    Article  PubMed  CAS  Google Scholar 

  103. Arnaud L, Chen S, Liu F et al (2011) Mechanism of inhibition of PP2A activity and abnormal hyperphosphorylation of tau by I2(PP2A)/SET. FEBS Lett 585:2653–2659

    Article  PubMed  CAS  Google Scholar 

  104. Junttila MR, Puustinen P, Niemelä M et al (2007) CIP2A inhibits PP2A in human malignancies. Cell 130:51–62

    Article  PubMed  CAS  Google Scholar 

  105. Gharbi-Ayachi A, Labbé JC, Burgess A et al (2010) The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 330:1673–1677

    Article  PubMed  CAS  Google Scholar 

  106. Mochida S, Maslen SL, Skehel M et al (2010) Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science 330:1670–1673

    Article  PubMed  CAS  Google Scholar 

  107. McConnell JL, Gomez RJ, McCorvey LRA et al (2007) Identification of a PP2A interacting protein that functions as a negative regulator of phosphatase activity in the ATM⁄ATR signaling pathway. Oncogene 26:6021–6030

    Article  PubMed  CAS  Google Scholar 

  108. Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352

    PubMed  CAS  Google Scholar 

  109. Deichmann M, Polychronidis M, Wacker J et al (2001) The protein phosphatase 2A subunit Bgamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Res 11:577–585

    Article  PubMed  CAS  Google Scholar 

  110. Roberts KG, Smith AM, McDougall F et al (2010) Essential requirement for PP2A inhibition by the oncogenic receptor c-KIT suggests PP2A reactivation as a strategy to treat c-KIT+ cancers. Cancer Res 70:5438–5447

    Article  PubMed  CAS  Google Scholar 

  111. Neviani P, Santhanam R, Trotta R et al (2005) The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 8:355–368

    Article  PubMed  CAS  Google Scholar 

  112. Perrotti D, Neviani P (2008) Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias. Cancer Metastasis Rev 27:159–168

    Article  PubMed  CAS  Google Scholar 

  113. Cristóbal I, Garcia-Orti L, Cirauqui C et al (2011) PP2A impaired activity is a common event in acute myeloid leukemia and its activation by forskolin has a potent anti-leukemic effect. Leukemia 25:606–614

    Article  PubMed  CAS  Google Scholar 

  114. Cristóbal I, Garcia-Orti L, Cirauqui C et al (2012) Overexpression of SET is a recurrent event associated with poor outcome and contributes to protein phosphatase 2A inhibition in acute myeloid leukemia. Haematologica 97:543–550

    Article  PubMed  CAS  Google Scholar 

  115. Liu F, Grundke-Iqbal I, Iqbal K et al (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22:1942–1950

    Article  PubMed  Google Scholar 

  116. McConnell JL, Wadzinski BE (2009) Targeting protein serine/threonine phosphatases for drug development. Mol Pharmacol 75:1249–1261

    Article  PubMed  CAS  Google Scholar 

  117. Kalev P, Sablina AA (2011) Protein phosphatase 2A as a potential target for anticancer therapy. Anticancer Agents Med Chem 11:38–46

    Article  PubMed  CAS  Google Scholar 

  118. Voronkov M, Braithwaite SP, Stock JB (2011) Phosphoprotein phosphatase 2A: a novel druggable target for Alzheimer’s disease. Future Med Chem 3:821–833

    Article  PubMed  CAS  Google Scholar 

  119. Braithwaite SP, Voronkov M, Stock JB et al (2012) Targeting phosphatases as the next generation of disease modifying therapeutics for Parkinson’s disease. Neurochem Int 61:899–906

    Article  PubMed  CAS  Google Scholar 

  120. Kowluru A, Matti A (2012) Hyperactivation of protein phosphatase 2A in models of glucolipotoxicity and diabetes: potential mechanisms and functional consequences. Biochem Pharmacol 84:591–597

    Article  PubMed  CAS  Google Scholar 

  121. Ingebritsen TS, Cohen P (1983) The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur J Biochem 132:255–261

    Article  PubMed  CAS  Google Scholar 

  122. Pelech S, Cohen P (1985) The protein phosphatases involved in cellular regulation. 1. Modulation of protein phosphatases-1 and 2A by histone H1, protamine, polylysine and heparin. Eur J Biochem 148:245–251

    Article  PubMed  CAS  Google Scholar 

  123. Waelkens E, Goris J, Merlevede W (1987) Purification and properties of polycation-stimulated phosphorylase phosphatases from rabbit skeletal muscle. J Biol Chem 262:1049–1059

    PubMed  CAS  Google Scholar 

  124. Janssens V, Derua R, Zwaenepoel K et al (2009) Specific regulation of protein phosphatase 2A PR72/B″ subunits by calpain. Biochem Biophys Res Commun 386:676–681

    Article  PubMed  CAS  Google Scholar 

  125. King AJ, Andjelkovic N, Hemmings BA et al (1994) The phospho-opsin phosphatase from bovine rod outer segments. An insight into the mechanism of stimulation of type-2A protein phosphatase activity by protamine. Eur J Biochem 225:383–394

    Article  PubMed  CAS  Google Scholar 

  126. Cheng Q, Erickson AK, Wang ZX et al (1996) Stimulation of phosphorylase phosphatase activity of protein phosphatase 2A1 by protamine is ionic strength dependent and involves interaction of protamine with both substrate and enzyme. Biochemistry 35:15593–15600

    Article  PubMed  CAS  Google Scholar 

  127. Agostinis P, Goris J, Waelkens E et al (1987) Dephosphorylation of phosphoproteins and synthetic phosphopeptides. Study of the specificity of the polycation-stimulated and MgATP-dependent phosphorylase phosphatases. J Biol Chem 262:1060–1064

    PubMed  CAS  Google Scholar 

  128. Chalfant CE, Szulc Z, Roddy P et al (2004) The structural requirements for ceramide activation of serine-threonine protein phosphatases. J Lipid Res 45:496–506

    Article  PubMed  CAS  Google Scholar 

  129. Chalfant CE, Kishikawa K, Mumby MC et al (1999) Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J Biol Chem 274:20313–20317

    Article  PubMed  CAS  Google Scholar 

  130. Habrukowich C, Han DK, Le A et al (2010) Sphingosine interaction with acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) regulates PP2A activity and cyclooxygenase (COX)-2 expression in human endothelial cells. J Biol Chem 285:26825–26831

    Article  PubMed  CAS  Google Scholar 

  131. Yoon CH, Kim MJ, Park MT et al (2009) Activation of p38 mitogen-activated protein kinase is required for death receptor-independent caspase-8 activation and cell death in response to sphingosine. Mol Cancer Res 7:361–370

    Article  PubMed  CAS  Google Scholar 

  132. Matsuoka Y, Nagahara Y, Ikekita M et al (2003) A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. Br J Pharmacol 138:1303–1312

    Article  PubMed  CAS  Google Scholar 

  133. Nagaoka Y, Otsuki K, Fujita T et al (2008) Effects of phosphorylation of immunomodulatory agent FTY720 (fingolimod) on antiproliferative activity against breast and colon cancer cells. Biol Pharm Bull 31:1177–1181

    Article  PubMed  CAS  Google Scholar 

  134. Neviani P, Santhanam R, Oaks JJ et al (2007) FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 117:2408–2421

    Article  PubMed  CAS  Google Scholar 

  135. Liu Q, Zhao X, Frissora F et al (2008) FTY720 demonstrates promising preclinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood 111:275–284

    Article  PubMed  CAS  Google Scholar 

  136. Liu Q, Alinari L, Chen CS et al (2010) FTY720 shows promising in vitro and in vivo preclinical activity by downmodulating Cyclin D1 and phospho-Akt in mantle cell lymphoma. Clin Cancer Res 16:3182–3192

    Article  PubMed  CAS  Google Scholar 

  137. Christensen DJ, Ohkubo N, Oddo J et al (2011) Apolipoprotein E and peptide mimetics modulate inflammation by binding the SET protein and activating protein phosphatase 2A. J Immunol 186:2535–2542

    Article  PubMed  CAS  Google Scholar 

  138. Switzer CH, Cheng RY, Vitek TM et al (2011) Targeting SET/I(2)PP2A oncoprotein functions as a multi-pathway strategy for cancer therapy. Oncogene 30:2504–2513

    Article  PubMed  CAS  Google Scholar 

  139. Christensen DJ, Chen Y, Oddo J et al (2011) SET oncoprotein overexpression in B-cell chronic lymphocytic leukemia and non-Hodgkin lymphoma: a predictor of aggressive disease and a new treatment target. Blood 118:4150–4158

    Article  PubMed  CAS  Google Scholar 

  140. Vitek MP, Christensen DJ, Wilcock D et al (2012) APOE-mimetic peptides reduce behavioral deficits, plaques and tangles in Alzheimer’s disease transgenics. Neurodegener Dis 10:122–126

    Article  PubMed  CAS  Google Scholar 

  141. Ghosal, K., Stathopoulos, A., Thomas, D. et al. (2012) The apolipoprotein-E-mimetic cog112 protects amyloid precursor protein intracellular domain-overexpressing animals from alzheimer’s disease-like pathological features. Neurodegener Dis PMID= 22965147

    Google Scholar 

  142. Chohan MO, Khatoon S, Iqbal IG et al (2006) Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett 580:3973–3979

    Article  PubMed  CAS  Google Scholar 

  143. Feschenko MS, Stevenson E, Nairn AC et al (2002) A novel cAMP-stimulated pathway in protein phosphatase 2A activation. J Pharmacol Exp Ther 302:111–118

    Article  PubMed  CAS  Google Scholar 

  144. Moon EY, Lerner A (2003) PDE4 inhibitors activate a mitochondrial apoptotic pathway in chronic lymphocytic leukemia cells that is regulated by protein phosphatase 2A. Blood 101:4122–4130

    Article  PubMed  CAS  Google Scholar 

  145. Mishra-Gorur K, Singer HA, Castellot JJ Jr (2002) Heparin inhibits phosphorylation and autonomous activity of Ca2+/calmodulin-dependent protein kinase II in vascular smooth muscle cells. Am J Pathol 161:1893–1901

    Article  PubMed  CAS  Google Scholar 

  146. Kamibayashi C, Estes R, Slaughter C et al (1991) Subunit interactions control protein phosphatase 2A. Effects of limited proteolysis, N-ethylmaleimide, and heparin on the interaction of the B subunit. J Biol Chem 266:13251–13260

    PubMed  CAS  Google Scholar 

  147. Nishimura M, Uyeda K (1995) Purification and characterization of a novel xylulose 5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. J Biol Chem 270:26341–26346

    Article  PubMed  CAS  Google Scholar 

  148. Kabashima T, Kawaguchi T, Wadzinski BE et al (2003) Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA 100:5107–5112

    Article  PubMed  CAS  Google Scholar 

  149. Corcoran NM, Martin D, Hutter-Paier B et al (2010) Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J Clin Neurosci 17:1025–1033

    Article  PubMed  CAS  Google Scholar 

  150. van Eersel J, Ke YD, Liu X et al (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci USA 107:13888–13893

    Article  PubMed  Google Scholar 

  151. Switzer CH, Ridnour LA, Cheng RY et al (2009) Dithiolethione compounds inhibit Akt signaling in human breast and lung cancer cells by increasing PP2A activity. Oncogene 28:3837–3846

    Article  PubMed  CAS  Google Scholar 

  152. Guichard C, Pedruzzi E, Fay M et al (2006) Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells. Carcinogenesis 27:1812–1827

    Article  PubMed  CAS  Google Scholar 

  153. Ricciarelli R, Tasinato A, Clément S (1998) alpha-Tocopherol specifically inactivates cellular protein kinase C alpha by changing its phosphorylation state. Biochem J 334:243–249

    PubMed  CAS  Google Scholar 

  154. Neuzil J, Weber T, Schröder A et al (2001) Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15:403–415

    Article  PubMed  CAS  Google Scholar 

  155. Lee KW, Chen W, Junn E et al (2011) Enhanced phosphatase activity attenuates α-synucleinopathy in a mouse model. J Neurosci 31:6963–6971

    Article  PubMed  CAS  Google Scholar 

  156. Lu J, Kovach JS, Johnson F et al (2009) Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms. Proc Natl Acad Sci USA 106:11697–11702

    Article  PubMed  CAS  Google Scholar 

  157. Lewy DS, Gauss CM, Soenen DR et al (2002) Fostriecin: chemistry and biology. Curr Med Chem 9:2005–2032

    Article  PubMed  CAS  Google Scholar 

  158. Swingle MR, Amable L, Lawhorn BG et al (2009) Structure-activity relationship studies of fostriecin, cytostatin, and key analogs, with PP1, PP2A, PP5, and( beta12-beta13)-chimeras (PP1/PP2A and PP5/PP2A), provide further insight into the inhibitory actions of fostriecin family inhibitors. J Pharmacol Exp Ther 331:45–53

    Article  PubMed  CAS  Google Scholar 

  159. Wada S, Usami I, Umezawa Y et al (2010) Rubratoxin A specifically and potently inhibits protein phosphatase 2A and suppresses cancer metastasis. Cancer Sci 101:743–750

    Article  PubMed  CAS  Google Scholar 

  160. Liu D, Chen Z (2009) The effects of cantharidin and cantharidin derivates on tumour cells. Anticancer Agents Med Chem 9:392–396

    Article  PubMed  CAS  Google Scholar 

  161. Kar S, Palit S, Ball WB et al (2012) Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis 17:735–747

    Article  PubMed  CAS  Google Scholar 

  162. Aceto N, Bertino P, Barbone D et al (2009) Taurolidine and oxidative stress: a rationale for local treatment of mesothelioma. Eur Respir J 34:1399–1407

    Article  PubMed  CAS  Google Scholar 

  163. de Los Ríos C, Egea J, Marco-Contelles J et al (2010) Synthesis, inhibitory activity of cholinesterases, and neuroprotective profile of novel 1,8-naphthyridine derivatives. J Med Chem 53:5129–5143

    Article  PubMed  CAS  Google Scholar 

  164. Cho DH, Choi YJ, Jo SA et al (2006) Troglitazone acutely inhibits protein synthesis in endothelial cells via a novel mechanism involving protein phosphatase 2A-dependent p70 S6 kinase inhibition. Am J Physiol Cell Physiol 291:C317–C326

    Article  PubMed  CAS  Google Scholar 

  165. Holmes CF, Luu HA, Carrier F et al (1990) Inhibition of protein phosphatases-1 and -2A with acanthifolicin. Comparison with diarrhetic shellfish toxins and identification of a region on okadaic acid important for phosphatase inhibition. FEBS Lett 270:216–218

    Article  PubMed  CAS  Google Scholar 

  166. Ishihara H, Martin BL, Brautigan DL et al (1989) Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 159:871–877

    Article  PubMed  CAS  Google Scholar 

  167. Eriksson JE, Toivola D, Meriluoto JA et al (1990) Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases. Biochem Biophys Res Commun 173:1347–1353

    Article  PubMed  CAS  Google Scholar 

  168. Li YM, Mackintosh C, Casida JE (1993) Protein phosphatase 2A and its [3H]cantharidin/[3H]endothall thioanhydride binding site. Inhibitor specificity of cantharidin and ATP analogues. Biochem Pharmacol 46: 1435–1443

    Article  PubMed  CAS  Google Scholar 

  169. Sakoff JA, McCluskey A (2004) Protein phosphatase inhibition: structure based design. Towards new therapeutic agents. Curr Pharm Des 10:1139–1159

    Article  PubMed  CAS  Google Scholar 

  170. Kawada M, Kawatsu M, Masuda T et al (2003) Specific inhibitors of protein phosphatase 2A inhibit tumor metastasis through augmentation of natural killer cells. Int Immunopharmacol 3:179–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C.L. and D.H. are supported by an I.W.T. fellowship of the Flemish Agency for Innovation by Science and Technology. V.J.’s research is funded by the Research Foundation-Flanders (G.0582.11N) and the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (IAP P7/13).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lambrecht, C., Haesen, D., Sents, W., Ivanova, E., Janssens, V. (2013). Structure, Regulation, and Pharmacological Modulation of PP2A Phosphatases. In: Millán, J. (eds) Phosphatase Modulators. Methods in Molecular Biology, vol 1053. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-562-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-562-0_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-561-3

  • Online ISBN: 978-1-62703-562-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics