Skip to main content

The Use of Calorie Restriction Mimetics to Study Aging

  • Protocol
  • First Online:
Biological Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1048))

Abstract

Calorie restriction (CR) has a variety of effects on extending lifespan and delaying the onset of age-related diseases, and it is accepted as the only established experimental antiaging intervention. Several pharmacological agents that can replicate the beneficial effects of CR, called calorie restriction mimetics (CRMs), have been identified. The nutrient-sensing pathways including those involving sirtuins (especially SIRT1) and mammalian target of rapamycin (mTOR) may regulate the physiology of CR, and candidate CRMs that modulate these specific pathways have been identified and investigated using animal models. In this chapter, we focus on candidate CRMs including sirtuin-activating compounds (STACs) and mTOR inhibitors, their slowing of aging, and methods for evaluation of lifespan and metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5:155–171, discussion 172

    PubMed  CAS  Google Scholar 

  2. Colman RJ, Anderson RM et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  PubMed  CAS  Google Scholar 

  3. Fontana L, Meyer TE, Klein S et al (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101:6659–6663

    Article  PubMed  CAS  Google Scholar 

  4. Meyer TE, Kovacs SJ, Ehsani AA et al (2006) Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 47:398–402

    Article  PubMed  CAS  Google Scholar 

  5. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922

    Article  PubMed  CAS  Google Scholar 

  6. Masoro EJ, Iwasaki K, Gleiser CA et al (1989) Dietary modulation of the progression of nephropathy in aging rats: an evaluation of the importance of protein. Am J Clin Nutr 49:1217–1227

    PubMed  CAS  Google Scholar 

  7. Zimmerman JA, Malloy V, Krajcik R et al (2003) Nutritional control of aging. Exp Gerontol 38:47–52

    Article  PubMed  CAS  Google Scholar 

  8. Ingram DK, Zhu M, Mamczarz J et al (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5:97–108

    Article  PubMed  CAS  Google Scholar 

  9. Ingram DK, Roth GS (2011) Glycolytic inhibition as a strategy for developing calorie restriction mimetics. Exp Gerontol 46:148–154

    Article  PubMed  CAS  Google Scholar 

  10. Imai S, Armstrong CM, Kaeberlein M et al (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    Article  PubMed  CAS  Google Scholar 

  11. Guarente L (2011) Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med 364:2235–2244

    Article  PubMed  CAS  Google Scholar 

  12. Boily G, Seifert EL, Bevilacqua L et al (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3:e1759

    Article  PubMed  Google Scholar 

  13. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  PubMed  CAS  Google Scholar 

  14. Bordone L, Cohen D, Robinson A et al (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6:759–767

    Article  PubMed  CAS  Google Scholar 

  15. Civitarese AE, Carling S, Heilbronn LK et al (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76

    Article  PubMed  Google Scholar 

  16. Jiang JC, Wawryn J, Shantha Kumara HM et al (2002) Distinct roles of processes modulated by histone deacetylases Rpd3p, Hda1p, and Sir2p in life extension by caloric restriction in yeast. Exp Gerontol 37:1023–1030

    Article  PubMed  CAS  Google Scholar 

  17. Kaeberlein M, Kirkland KT, Fields S et al (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2:E296

    Article  PubMed  Google Scholar 

  18. Smith DL Jr, McClure JM, Matecic M et al (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the sirtuins. Aging Cell 6:649–662

    Article  PubMed  CAS  Google Scholar 

  19. Burnett C, Valentini S, Cabreiro F et al (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485

    Article  PubMed  CAS  Google Scholar 

  20. Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  PubMed  CAS  Google Scholar 

  21. Price NL, Gomes AP, Ling AJ et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    Article  PubMed  CAS  Google Scholar 

  22. Baur JA, Ungvari Z, Minor RK et al (2012) Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 11:443–461

    Article  PubMed  CAS  Google Scholar 

  23. Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  PubMed  CAS  Google Scholar 

  24. Wood JG, Rogina B, Lavu S et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  PubMed  CAS  Google Scholar 

  25. Valenzano DR, Terzibasi E, Genade T et al (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

    Article  PubMed  CAS  Google Scholar 

  26. Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  PubMed  CAS  Google Scholar 

  27. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  PubMed  CAS  Google Scholar 

  28. Timmers S, Konings E, Bilet L et al (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622

    Article  PubMed  CAS  Google Scholar 

  29. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  PubMed  CAS  Google Scholar 

  30. Yilmaz OH, Katajisto P, Lamming DW et al (2012) mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486:490–495

    PubMed  CAS  Google Scholar 

  31. Stanfel MN, Shamieh LS, Kaeberlein M et al (2009) The TOR pathway comes of age. Biochim Biophys Acta 1790:1067–1074

    Article  PubMed  CAS  Google Scholar 

  32. Kaeberlein M, Powers RW III, Steffen KK et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196

    Article  PubMed  CAS  Google Scholar 

  33. Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906

    Article  PubMed  CAS  Google Scholar 

  34. Kapahi P, Zid BM, Harper T et al (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890

    Article  PubMed  CAS  Google Scholar 

  35. Harrison DE, Strong R, Sharp ZD et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    PubMed  CAS  Google Scholar 

  36. Kapahi P, Chen D, Rogers AN et al (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11:453–465

    Article  PubMed  CAS  Google Scholar 

  37. Lamming DW, Ye L, Katajisto P et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643

    Article  PubMed  CAS  Google Scholar 

  38. Blagosklonny MV (2010) Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 9:683–688

    Article  PubMed  CAS  Google Scholar 

  39. Kenyon C, Chang J, Gensch E et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–\464

    Article  PubMed  CAS  Google Scholar 

  40. Clancy DJ, Gems D, Harshman LG et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  PubMed  CAS  Google Scholar 

  41. Tatar M, Kopelman A, Epstein D et al (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  PubMed  CAS  Google Scholar 

  42. Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    Article  PubMed  Google Scholar 

  43. Kitada M, Kume S, Imaizumi N et al (2011) Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 60:634–643

    Article  PubMed  CAS  Google Scholar 

  44. Minor RK, Baur JA, Gomes AP et al (2011) SRT1720 improves survival and healthspan of obese mice. Sci Rep 1:70

    Article  PubMed  Google Scholar 

  45. Pearson KJ, Baur JA, Lewis KN et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    Article  PubMed  CAS  Google Scholar 

  46. Wilkinson JE, Burmeister L, Brooks SV et al (2012) Rapamycin slows aging in mice. Aging Cell 11:675–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from Novo Nordisk Pharma, a Grant-in-Aid for Scientific Research (C) (24591218), and a Grant for Promoted Research from Kanazawa Medical University (S2012-4) to M. Kitada and by Grants for Collaborative Research (C2012-1) and Specially Promoted Research from Kanazawa Medical University (SR2012-06) and the Fourth Annual Research Award Grant of Japanese Society of Anti-Aging Medicine to D. Koya.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Kitada, M., Koya, D. (2013). The Use of Calorie Restriction Mimetics to Study Aging. In: Tollefsbol, T. (eds) Biological Aging. Methods in Molecular Biology, vol 1048. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-556-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-556-9_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-555-2

  • Online ISBN: 978-1-62703-556-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics