Skip to main content

Cell Sorting of Young and Senescent Cells

  • Protocol
  • First Online:
Biological Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1048))

Abstract

Cellular senescence is the irreversible loss of proliferative potential and is accompanied by a number of phenotypic changes. First described by Hayflick and Moorhead in 1961, it has since become a popular model to study cellular aging. The replicative lifespan of human fibroblasts is heterogeneous even in clonal populations, with the fraction of senescent cells increasing with each population doubling (PD). Thus, the study of individual cells in mass culture is necessary in order to properly understand senescence and its associated phenotype. Cell sorting is a process that allows the physical separation of cells based on different characteristics which can be measured by flow cytometry. Here, we describe various methods by which senescent cells can be sorted from mixed cultures and discuss how different methods impact on the posterior analysis of sorted populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirkwood TBL (2005) Understanding the Odd Science of Aging. Cell 120(4):437–447

    Article  PubMed  CAS  Google Scholar 

  2. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  3. Smith JR, Whitney RG (1980) Intraclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging. Science 207(4426):82–84

    Article  PubMed  CAS  Google Scholar 

  4. Kill IR et al (1994) The expression of proliferation-dependent antigens during the lifespan of normal and progeroid human fibroblasts in culture. J Cell Sci 107(2):571–579

    PubMed  CAS  Google Scholar 

  5. Thomas E et al (1997) Different kinetics of senescence in human fibroblasts and peritoneal mesothelial cells. Exp Cell Res 236(1):355–358

    Article  PubMed  CAS  Google Scholar 

  6. Lawless C et al (2010) Quantitative assessment of markers for cell senescence. Exp Gerontol 45(10):772–778

    Article  PubMed  CAS  Google Scholar 

  7. Bond JA, Wyllie FS, Wynford-Thomas D (1994) Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 9(7):1885–1889

    PubMed  CAS  Google Scholar 

  8. d’Adda di Fagagna F et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198

    Article  PubMed  Google Scholar 

  9. Cristofalo VJ et al (1998) Age-dependent modifications of gene expression in human fibroblasts. Crit Rev Eukaryot Gene Expr 8(1):43–80

    Article  PubMed  CAS  Google Scholar 

  10. Cristofalo VJ, Kritchevsky D (1969) Cell size and nucleic acid content in the diploid human cell line WI-38 during aging. Med Exp Int J Exp Med 19(6):313–320

    PubMed  CAS  Google Scholar 

  11. Passos JF et al (2007) Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity In Telomere-Dependent Senescence. PLoS Biol 5(5):e110

    Article  PubMed  Google Scholar 

  12. Terman A, Brunk UT (1998) Lipofuscin: Mechanisms of formation and increase with age. APMIS 106(2):265–276

    Article  PubMed  CAS  Google Scholar 

  13. Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92(20):9363–9367

    Article  PubMed  CAS  Google Scholar 

  14. Coppé JP et al (2008) Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. PLoS Biol 6(12):e301

    Article  Google Scholar 

  15. Acosta JC et al (2008) Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell 133(6):1006–1018

    Article  PubMed  CAS  Google Scholar 

  16. Narita M et al (2003) Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence. Cell 113(6):703–716

    Article  PubMed  CAS  Google Scholar 

  17. Binet R et al (2009) WNT16B Is a New Marker of Cellular Senescence That Regulates p53 Activity and the Phosphoinositide 3-Kinase/AKT Pathway. Cancer Res 69(24):9183–9191

    Article  PubMed  CAS  Google Scholar 

  18. Freund A et al (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23(11):2066–2075

    Article  PubMed  CAS  Google Scholar 

  19. Hewitt G et al (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:708

    Article  PubMed  Google Scholar 

  20. Herbig U et al (2006) Cellular Senescence in Aging Primates. Science 311(5765):1257–1257

    Article  PubMed  CAS  Google Scholar 

  21. Zglinicki TV et al (2005) Human cell senescence as a DNA damage response. Mech Ageing Dev 126(1):111–117

    Article  Google Scholar 

  22. Lawless C et al (2010) Quantitative assessment of markers for cell senescence. Exp Gerontol 45(10):772–778

    Article  PubMed  CAS  Google Scholar 

  23. Sgonc R, Gruber J (1998) Apoptosis detection: An overview. Exp Gerontol 33(6):525–533

    Article  PubMed  CAS  Google Scholar 

  24. Wei W, Sedivy JM (1999) Differentiation between Senescence (M1) and Crisis (M2) in Human Fibroblast Cultures. Exp Cell Res 253(2):519–522

    Article  PubMed  CAS  Google Scholar 

  25. Gorbunova V, Seluanov A, Pereira-Smith OM (2003) Evidence that high telomerase activity may induce a senescent-like growth arrest in human fibroblasts. J Biol Chem 278(9):7692–7698

    Article  PubMed  CAS  Google Scholar 

  26. Sitte N et al (2001) Lipofuscin accumulation in proliferating fibroblasts in vitro: An indicator of oxidative stress. Exp Gerontol 36(3):475–486

    Article  PubMed  CAS  Google Scholar 

  27. Martinez-Vicente M, Sovak G, Cuervo AM (2005) Protein degradation and aging. Exp Gerontol 40(8‚Äì9):622–633

    Article  PubMed  CAS  Google Scholar 

  28. Martin-Ruiz C et al (2004) Stochastic Variation in Telomere Shortening Rate Causes Heterogeneity of Human Fibroblast Replicative Life Span. J Biol Chem 279(17):17826–17833

    Article  PubMed  CAS  Google Scholar 

  29. Birket MJ et al (2008) The Relationship between the Aging- and Photo-Dependent T414G Mitochondrial DNA Mutation with Cellular Senescence and Reactive Oxygen Species Production in Cultured Skin Fibroblasts. J Invest Dermatol 129(6):1361–1366

    Article  PubMed  Google Scholar 

  30. Hutter E et al (2004) Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J 380(Pt 3):919–928

    Article  PubMed  CAS  Google Scholar 

  31. Passos JF et al (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed  Google Scholar 

  32. Kalyanaraman B et al (2011) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6

    Article  PubMed  Google Scholar 

  33. Lawless C et al (2012) A Stochastic Step Model of Replicative Senescence Explains ROS Production Rate in Ageing Cell Populations. PLoS One 7(2):e32117

    Article  PubMed  CAS  Google Scholar 

  34. Passos JF et al (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed  Google Scholar 

  35. Scholzen T, Gerdes J (2000) The Ki-67 protein: From the Known and the Unknown. J Cell Physiol 182:311–322

    Article  PubMed  CAS  Google Scholar 

  36. D’Adda di Fagagna F et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198

    Article  PubMed  Google Scholar 

  37. Satyanarayana A et al (2004) Mitogen stimulation cooperates with telomere shortening to activate DNA damage responses and senescence signaling. Mol Cell Biol 24(12):5459–5474

    Article  PubMed  CAS  Google Scholar 

  38. Masterson JC, O’Dea S (2007) 5-Bromo-2-deoxyuridine activates DNA damage signalling responses and induces a senescence-like phenotype in p16-null lung cancer cells. Anticancer Drugs 18(9):1053–1068. doi:10.1097/CAD.0b013e32825209f6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a BBSRC David Phillips Fellowship awarded to J.P.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Hewitt, G., von Zglinicki, T., Passos, J.F. (2013). Cell Sorting of Young and Senescent Cells. In: Tollefsbol, T. (eds) Biological Aging. Methods in Molecular Biology, vol 1048. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-556-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-556-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-555-2

  • Online ISBN: 978-1-62703-556-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics