Skip to main content

MiniPEG-γPNA

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1050))

Abstract

Peptide nucleic acids (PNAs) are attractive, as compared to other classes of oligonucleotides that have been developed to date, in that they are relatively easy to synthesize and modify, hybridize to DNA and RNA with high affinity and sequence selectivity, and are resistant to enzymatic degradation by proteases and nucleases; however, the downside is that they are only moderately soluble in aqueous solution. Herein we describe the protocols for synthesizing the second-generation γPNAs, both the monomers and oligomers, containing MiniPEG side chain with considerable improvements in water solubility, biocompatibility, and hybridization properties.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  PubMed  CAS  Google Scholar 

  2. Egholm M, Buchardt O et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568

    Article  PubMed  CAS  Google Scholar 

  3. Nielsen PE (1999) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32:624–630

    Article  CAS  Google Scholar 

  4. Bentin T, Larsen HJ, Nielsen PE (2003) Combined triplex/duplex invasion of double-stranded DNA by "tail-clamp" peptide nucleic acid. Biochemistry 42:13987–13995

    Article  PubMed  CAS  Google Scholar 

  5. Demidov VV et al (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313

    Article  PubMed  CAS  Google Scholar 

  6. Ray A, Norden B (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14:1041–1060

    PubMed  CAS  Google Scholar 

  7. Nielsen PE (2004) PNA technology. Mol Biotechnol 26:233–248

    Article  PubMed  CAS  Google Scholar 

  8. Dueholm KL et al (1994) Synthesis of peptide nucleic acid monomers containing the four natural nucleobases: thymine, cytosine, adenine, and guanine and their oligomerization. J Org Chem 59:5767–5773

    Article  CAS  Google Scholar 

  9. Thomson SA et al (1995) Fmoc mediated synthesis of peptide nucleic acids. Tetrahedron 51:6179–6194

    Article  CAS  Google Scholar 

  10. Beck F, Nielsen PE (2003) Artificial DNA: methods and applications. CRC Press, Boca Raton, FL, pp 91–114

    Google Scholar 

  11. Braasch DA, Corey DR (2001) Synthesis, analysis, purification, and intracellular delivery of peptide nucleic acids. Methods 23:97–107

    Article  PubMed  CAS  Google Scholar 

  12. Tackett AJ, Corey DR, Raney KD (2002) Non-Watson-Crick interactions between PNA and DNA inhibit the ATPase activity of bacteriophage T4 Dda helicase. Nucleic Acids Res 30:950–957

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Masuko M et al (2003) Hybridization of an immobilized PNA probe with its complementary oligodeoxyribonucleotide on the surface of silica glass. Nucleic Acids Res (Suppl):145–146

    Google Scholar 

  14. Cattani-Scholz A et al (2009) PNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors. Biomacromolecules 10:489–496

    Article  PubMed  CAS  Google Scholar 

  15. Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA). Oligonucleotide analogues with an acbiral peptide backbone. J Am Chem Soc 114:1895–1897

    Article  CAS  Google Scholar 

  16. Haaima G, Lohse A, Buchardt O, Nielsen PE (1996) Peptide nucleic acids (PNAs) containing thymine monomers derived from chiral amino acids: hybridization and solubility properties of D-lysine PNA. Angew Chem Int Ed Engl 35:1939–1941

    Article  CAS  Google Scholar 

  17. Sforza S, Tedeschi T, Corradini R, Marchelli R (2007) Induction of helical handedness and dna binding properties of peptide nucleic acids (PNAs) with two stereogenic centres. Eur J Org Chem 2007:5879–5885

    Article  CAS  Google Scholar 

  18. Boyarskaya NP et al (2006) Synthesis of two new thymine-containing negatively charged PNA monomers. Dokl Chem (Transl Dokl Akad Nauk) 408:57–60

    CAS  Google Scholar 

  19. Gildea BD et al (1998) PNA solubility enhancers. Tetrahedron Lett 39:7255–7258

    Article  CAS  Google Scholar 

  20. Hudson RHE, Liu Y, Wojciechowski F (2007) Hydrophilic modifications in peptide nucleic acid synthesis and properties of PNA possessing 5-hydroxymethyluracil and 5-hydroxymethylcytosine. Can J Chem 85:302–312

    Article  Google Scholar 

  21. Peyman A et al (1996) Phosphonic ester nucleic acids (PHONAs): oligodeoxyribonucleotide analog with an achiral phosphonic acid ester backbone. Angew Chem Int Ed Engl 35:2636–2638

    Article  CAS  Google Scholar 

  22. Efimov VA et al (1998) Synthesis and evaluation of some properties of chimeric oligomers containing PNA and phosphono-PNA residues. Nucleic Acids Res 26:566–575

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Bonora GM et al (2007) PNA conjugated to high-molecular weight poly(ethylene glycol): synthesis and properties nucleosides, nucleotides. Nucleic Acids 26:661–664

    Article  CAS  Google Scholar 

  24. Petersen KH, Jensen DK, Egholm M, Nielsen PE, Buchardt O (1995) A PNA-DNA linker synthesis of N-[(4,4′-dimethoxytrityloxy)ethyl]-N-(thymin-1-ylacetyl)glycine. Bioorg Med Chem Lett 5:1119–1124

    Article  CAS  Google Scholar 

  25. Bergmann F, Bannwarth W, Tam S (1995) Solid phase synthesis of directly linked PNA-DNA-hybrids. Tetrahedron Lett 36:6823–6826

    Article  CAS  Google Scholar 

  26. Uhlmann E, Will DW, Breipohl G, Langner D, Ryte A (1996) Synthesis and properties of PNA/DNA chimeras. Angew Chem Int Ed Engl 35:2632–2635

    Article  Google Scholar 

  27. Finn PJ, Gibson NJ, Fallon R, Hamilton A, Brown T (1996) Synthesis and properties of DNA-PNA chimeric oligomers. Nucleic Acids Res 24:3357–3363

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Vander Laan AC et al (1997) A convenient automated solid-phase synthesis of PNA-(5′)-DNA-(3′)-PNA chimera. Tetrahedron Lett 38:2249–2252

    Article  CAS  Google Scholar 

  29. Kuwahara M, Arimitsu M, Sisido M (1999) Novel peptide nucleic acid that shows high sequence specificity and All-or-none-type hybridization with the complementary DNA. J Am Chem Soc 121:256–257

    Article  CAS  Google Scholar 

  30. Sahu B et al (2011) Synthesis and characterization of conformationally preorganized,(R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 76:5614–5627

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Dragulescu-Andrasi A et al (2006) A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128:10258–10267

    Article  PubMed  CAS  Google Scholar 

  32. Zhou P, Dragulescu-Andrasi A et al (2006) Synthesis of cell-permeable peptide nucleic acid monomers and oligomers, and characterization of their hybridization and uptake properties. Bioorg Med Chem Lett 16:4931–4935

    Article  PubMed  CAS  Google Scholar 

  33. Rapireddy S, He G, Roy S, Armitage BA, Ly DH (2007) Strand invasion of mixed-sequence B-DNA by acridine-linked, γ-peptide nucleic acid (γ-PNA). J Am Chem Soc 129:15596–15600

    Article  PubMed  CAS  Google Scholar 

  34. Chenna V et al (2008) A simple cytosine to G-clamp nucleobase substitution enables chiral-PNAs to invade mixed-sequence double-helical B-form DNA. ChemBioChem 9:2388–2391

    Article  PubMed  CAS  Google Scholar 

  35. Sahu B et al (2009) Synthesis of conformationally preorganized and cell-permeable guanidine-based γ-peptide nucleic acids (γGPNAs). J Org Chem 74:1509–1516

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Christensen et al (1995) Solid-phase synthesis of peptide nucleic acids. J Pept Sci 1:175–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Manna, A., Rapireddy, S., Bahal, R., Ly, D.H. (2014). MiniPEG-γPNA. In: Nielsen, P., Appella, D. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 1050. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-553-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-553-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-552-1

  • Online ISBN: 978-1-62703-553-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics