Skip to main content

New Opportunities for Immobilization of Enzymes

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1051))

Abstract

In this chapter, as a general introduction, we summarize our personal point of view on immobilization technique in order to prepare optimal and cost-effective biocatalysts. Special attention is paid to the improvement of enzyme properties via immobilization techniques. From the stabilization by multipoint covalent attachment to the generation of hydrophilic environments via post-immobilization techniques are here discussed. Immobilization techniques, a necessary tool to reuse enzyme, have to be simple and, if possible, may become a very powerful tool to greatly improve properties of every kind of enzymes: monomeric, multimeric, stable, labile, poorly selective, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong C-H, Whitesides GM (1994) Enzymes in synthetic organic chemistry. In: Baldwin JE, Magnus FRS (eds) Tetrahedron organic chemistry series, vol 12. Pergamon, Oxford, pp 41–130

    Google Scholar 

  2. Robertson DE, Steer BA (2004) Recent progress in biocatalyst discovery and optimization. Curr Opin Chem Biol 8:141–149

    Article  PubMed  CAS  Google Scholar 

  3. van den Burg B, Eijsink VGH (2002) Selection of mutations for increased protein stability. Curr Opin Chem Biol 13:333–337

    Google Scholar 

  4. Fernández-Lafuente R, Hernández-Jústiz O, Mateo C, Fernández-Lorente G, Terreni M, Alonso J, Garcia-López JL, Moreno MA, Guisán JM (2001) Biotransformations catalyzed by multimeric enzymes: stabilization of tetrameric ampicillin acylase permits the optimization of ampicillin synthesis under dissociation conditions. Biomacromolecules 2:95–104

    Article  PubMed  Google Scholar 

  5. Betancor L, Hidalgo A, Fernández-Lorente G, Mateo C, Fernández-Lafuente R, Guisan JM (2003) Preparation of a stable biocatalyst of bovine liver catalase. Biotechnol Prog 19:763–767

    Article  PubMed  CAS  Google Scholar 

  6. Rosell CM, Terreni M, Fernández-Lafuente R, Guisán JM (1998) A criterium for the selection of monophasic solvents for enzymatic synthesis. Enzyme Microb Technol 23:64–69

    Article  CAS  Google Scholar 

  7. Guisán JM, Álvaro G, Rosell CM, Fernández-Lafuente R (1994) Industrial design of enzymatic processes catalized by very active immobilised derivatives. Utilisation of diffusinal limitation (gradients of pH) as a profitable tool in enzyme engineering. Biotech Appl Biochem 20:357–369

    Google Scholar 

  8. Illanes A, Wilson L (2003) Enzyme reactor design under thermal inactivation. Crit Rev Biotechnol 23:61–93

    Article  PubMed  CAS  Google Scholar 

  9. Spiess A, Schlothauer RC, Hinrichs J, Scheidat B, Kasche V (1999) pH gradients in immobilized amidases and their influence on rates and yields of beta-lactam hydrolysis. Biotecnol Bioeng 62:267–277

    Article  CAS  Google Scholar 

  10. Bickerstaff GF (1997) Immobilization of enzymes and cells, Methods in biotechnology. Humana, New York, NY

    Google Scholar 

  11. Katchalski-Katzir E (1993) Immobilized enzymes: learning from past successes and failures. TIB 11:471–478

    Article  CAS  Google Scholar 

  12. Fernández-Lafuente R, Guisán JM (1998) Enzyme and protein engineering via immobilization and post-immobilization techniques. In: Pandalai SG (ed) Recent research developments in biotechnology and bioengineering. Research Signpost, Trivandrum, pp 299–309

    Google Scholar 

  13. Pessela BCC, Mateo C, Carrascosa AV, Vian A, García JL, Guisan JM, Fernández-Lafuente R (2003) One step purification, covalent immobilization and additional stabilization of a thermophilic poly-his-tagged beta-galactosidase of Thermus sp. strain t2, novel heterofunctional chelate-epoxy supports. Biomacromolecules 4:107–113

    Article  PubMed  CAS  Google Scholar 

  14. Abian O, Grazú V, Hermoso J, González R, García JL, Fernández-Lafuente R, Guisán JM (2004) Stabilization of penicillin G acylase from Escherichia coli: site directed mutagenesis of the protein surface to increase multipoint covalent attachment. Appl Envir Microb 70:1249–1251

    Article  CAS  Google Scholar 

  15. López-Gallego F, Montes T, Fuentes M, Alonso N, Grazu V, Betancor L, Guisan JM, Fernandez-Lafuente R (2005) Chemical increase of the amount of reactive groups on enzyme surface to improve its stabilization via multipoint covalent attachment. J Biotechnol 116:1–10

    Article  PubMed  Google Scholar 

  16. Betancor L, Fuentes M, Dellamora-Ortiz G, López-Gallego F, Hidalgo A, Alonso-Morales N, Mateo C, Guisán JM, Fernández-Lafuente R (2005) Dextran aldehyde coating of glucose oxidase immobilized on magnetic nano-particles prevents inactivation by gas bubbles. J Mol Catal B Enzymatic 32:97–101

    Article  CAS  Google Scholar 

  17. Guisán JM (1988) Aldehyde gels as activated support for immobilization-stabilization of enzymes. Enzyme Microb Technol 10:375–382

    Article  Google Scholar 

  18. Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G, Palomo JM, Grazu V, Pessela BCC, Giacomini C, Irazoqui G, Villarino A, Ovsejevi A, Batista-Viera F, Fernandez-Lafuente R, Guisán JM (2005) Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb Technol 37:456–462

    Article  CAS  Google Scholar 

  19. Mateo C, Abian O, Fernández-Lorente G, Predoche J, Fernández-Lafuente R, Guisan JM (2002) Sepabeads: a novel epoxy-support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol Prog 18:629–634

    Article  PubMed  CAS  Google Scholar 

  20. Mateo C, Torres R, Fernández-Lorente G, Ortiz C, Fuentes M, Hidalgo A, López-Gallego F, Abian O, Palomo JM, Betancor L, Pessela BCC, Guisan JM, Fernández-Lafuente R (2003) Epoxy-amino groups: a new tool for improved immobilization of proteins by the epoxy method. Biomacromolecules 4:772–777

    Article  PubMed  CAS  Google Scholar 

  21. Poltorak OM, Chukhary ES, Torshin IY (1998) Dissociative thermal inactivation, stability and activity of oligomeric enzymes. Biochemestry (Moscow) 63:360–369

    Google Scholar 

  22. Fernández-Lafuente R, Rodríguez V, Mateo C, Penzol G, Hernández-Justiz O, Irazoqui G, Villarino A, Ovsejevi K, Batista F, Guisán JM (1999) Strategies for the stabilization of multimeric enzymes via immobilization and post-immobilization techniques. J Mol Catal B Enzymatic 7:181–189

    Article  Google Scholar 

  23. Wilson L, Betancor L, Fernández-Lorente G, Fuentes M, Hidalgo A, Guisán JM, Pessela BCC, Fernández-Lafuente R (2004) Crosslinked aggregates of multimeric enzymes: a simple and efficient methodology to stabilize their quaternary structure. Biomacromolecules 5:814–817

    Article  PubMed  CAS  Google Scholar 

  24. Bastida A, Sabuquillo P, Armisen P, Fernández-Lafuente R, Huguet J, Guisán JM (1998) A single step purification, immobilization and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng 58:486–493

    Article  PubMed  CAS  Google Scholar 

  25. Fernández-Lafuente R, Armisen P, Sabuquillo P, Fernández-Lorente G, Guisán JM (1998) Immobilization of lipases by selective adsorption on hydrophobic supports. Chem Phys Lipids 93:185–197

    Article  PubMed  Google Scholar 

  26. Palomo MJ, Muñoz G, Fernández-Lorente G, Mateo C, Fernández-Lafuente R, Guisán JM (2002) Interfacial adsorption of lipases on very hydrophobic support (octadecyl Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J Mol Catal B Enzymatic 19–20:279–286

    Article  Google Scholar 

  27. Fernández-Lafuente R, Rosell CM, Álvaro G, Guisán JM (1992) Additional stabilisation of penicillin G acylase by controlled chemical modification of immobilised/stabilised derivatives. Enzyme Microb Technol 14:489–495

    Article  PubMed  Google Scholar 

  28. Fernández-Lafuente R, Rosell CM, Guisán JM, Caanan-Haden L, Rodes L (1999) Facile synthesis of artificial enzyme nano-environments via solid-phase chemistry of immobilized derivatives dramatic stabilization of penicillin acylase versus organic solvents. Enzyme Microb Technol 24:96–103

    Article  Google Scholar 

  29. Abian O, Wilson L, Mateo C, Fernández-Lorente G, Palomo JM, Fernández-Lafuente R, Guisán JM, Re D, Tam A, Daminatti M (2002) Preparation of artificial hyper-hydrophilic micro-environments (polymeric salts) surrounding immobilized enzyme molecules. New enzyme derivatives to be used in any reaction medium. J Mol Cat B Enzymatic 19–20:295–303

    Article  Google Scholar 

  30. Wilson L, Illanes A, Abián O, Pessela BCC, Fernández-Lafuente R, Guisán JM (2004) Co-aggregation of penicillin g acylase and polyionic polymers: a simple methodology to prepare enzyme biocatalysts stable in organic media. Biomacromolecules 5:852–857

    Article  PubMed  CAS  Google Scholar 

  31. Penzol G, Armisen P, Fernández-Lafuente R, Rodes L, Guisán JM (1998) Use of dextrans as long, inert and hydrophilic spacer arms to improve the performance of immobilized proteins acting on macromolecules. Biotechnol Bioeng 60:518–523

    Article  PubMed  CAS  Google Scholar 

  32. Turkova J (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J Chromatography B 722:11–31

    Article  CAS  Google Scholar 

  33. Fuentes M, Mateo C, Guisán JM, Fernández-Lafuente R (2005) Preparation of inert magnetic nano-particles for the directed immobilization of antibodies. Biosen Bioelec 20:1380–1387

    Article  CAS  Google Scholar 

  34. Lund V, Schmid R, Rickwood D, Hornes E (1988) Assesment of methods for covalent biding of nucleic acids to magnetic beads. Dynabeads, and the characteristics of the bound nucleic acids in hybridization reactions. Nucleic Acids Res 16:10861–10880

    Article  PubMed  CAS  Google Scholar 

  35. Fuentes M, Mateo C, Garcia L, Tercero JC, Guisan JM, Fernández-Lafuente R (2004) The directed covalent immobilization of aminated DNA probes on aminated plates. Biomacromolecules 5:883–888

    Article  PubMed  CAS  Google Scholar 

  36. Pessela BCC, Torres R, Fuentes M, Mateo C, Fernandez-Lafuente R, Guisán JM (2004) Immobilization of rennet from Mucor miehei via its sugar chain. Its use in milk coagulation. Biomacromolecules 5:2029–2033

    Article  PubMed  CAS  Google Scholar 

  37. Fuentes M, Mateo C, Rodríguez A, Casquerio M, Tercero JC, Riese H, Fernandez-Lafuente R, Guisan JM (2006) Detecting minimal traces of DNA by using DNA covalently attached to superparamagnetic nanoparticles and PCR-ELISA in one step. Biosen Bioelec 21:1574–1580

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Guisan, J.M. (2013). New Opportunities for Immobilization of Enzymes. In: Guisan, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 1051. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-550-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-550-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-549-1

  • Online ISBN: 978-1-62703-550-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics