Skip to main content

Identifying Associations Between Genomic Alterations in Tumors

  • Protocol
  • First Online:
Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

  • 5003 Accesses

Abstract

Single-nucleotide polymorphism (SNP) mapping arrays are a reliable method for identifying somatic copy number alterations in cancer samples. Though this is immensely useful to identify potential driver genes, it is not sufficient to identify genes acting in a concerted manner. In cancer cells, co-amplified genes have been shown to provide synergistic effects, and genomic alterations targeting a pathway have been shown to occur in a mutually exclusive manner. We therefore developed a bioinformatic method for detecting such gene pairs using an integrated analysis of genomic copy number and gene expression data. This approach allowed us to identify a gene pair that is co-amplified and co-expressed in high-grade serous ovarian cancer. This finding provided information about the interaction of specific genetic events that contribute to the development and progression of this disease.

Joshy George and Kylie L. Gorringe have contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.R-project.org

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  2. Anglesio MS, Arnold JM, George J, Tinker AV, Tothill R et al (2008) Mutation of ERBB2 provides a novel alternative mechanism for the ubiquitous activation of RAS-MAPK in ovarian serous low malignant potential tumors. Mol Cancer Res 6:1678–1690

    Article  PubMed  CAS  Google Scholar 

  3. Kwek SS, Roy R, Zhou H, Climent J, Martinez-Climent JA et al (2009) Co-amplified genes at 8p12 and 11q13 in breast tumors cooperate with two major pathways in oncogenesis. Oncogene 28(17):1892–1903

    Article  PubMed  CAS  Google Scholar 

  4. Bredel M, Scholtens DM, Harsh GR, Bredel C, Chandler JP et al (2009) A network model of a cooperative genetic landscape in brain tumors. JAMA 302:261–275

    Article  PubMed  CAS  Google Scholar 

  5. Gorringe KL, George J, Anglesio MS, Ramakrishna M, Etemadmoghadam D, et al (2010) Copy number analysis identifies novel interactions between genomic loci in ovarian cancer. PLoS One 5(9): e11408

    Google Scholar 

  6. Etemadmoghadam D, George J, Cowin PA, Cullinane C, Kansara M et al (2010) Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer. PLoS One 5:e15498

    Article  PubMed  Google Scholar 

  7. Smyth GK (2003) Pearson’s goodness of fit statistic as a score test statistic. Statistics and science: a festschrift for Terry Speed. Institute of Mathematical Statistics, Ann Arbor, MI, pp 115–126

    Book  Google Scholar 

  8. Villanueva J, Vultur A, Herlyn M (2011) Resistance to BRAF inhibitors: unraveling mechanisms and future treatment options. Cancer Res 71:7137–7140

    Article  PubMed  CAS  Google Scholar 

  9. TCGA (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  Google Scholar 

  10. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T et al (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A 104:20007–20012

    Article  PubMed  CAS  Google Scholar 

  11. Bengtsson H, Irizarry R, Carvalho B, Speed TP (2008) Estimation and assessment of raw copy numbers at the single locus level. Bioinformatics 24:759–767

    Article  PubMed  CAS  Google Scholar 

  12. Venkatraman ES, Olshen AB (2007) A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23:657–663

    Article  PubMed  CAS  Google Scholar 

  13. Gorringe KL, Campbell IG (2008) High-resolution copy number arrays in cancer and the problem of normal genome copy number variation. Genes Chromosomes Cancer 47:933–938

    Article  PubMed  CAS  Google Scholar 

  14. Phipson B, Smyth GK (2010) Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat Appl Genet Mol Biol 9:Article39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

George, J., Gorringe, K.L., Smyth, G.K., Bowtell, D.D.L. (2013). Identifying Associations Between Genomic Alterations in Tumors. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics