Skip to main content

Deep Transcriptome Profiling of Ovarian Cancer Cells Using Next-Generation Sequencing Approach

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

Abstract

The next-generation sequencing technology allows identification and cataloging of almost all mRNAs, even those with only one or a few transcripts per cell. To understand the chemotherapy response program in ovarian cancer cells at deep transcript sequencing levels, we applied two next-generation sequencing technologies to study two ovarian chemotherapy response models: the in vitro acquired cisplatin-resistant cell line model (IGROV-1-CP and IGROV1) and the in vivo ovarian cancer tissue resistant model. We identified 3,422 signatures (2,957 genes) that are significantly differentially expressed between IGROV1 and IGROV-1-CP cells (P < .001). Our database offers the first comprehensive view of the digital transcriptomes of ovarian cancer cell lines and tissues with different chemotherapy response phenotypes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lin B et al (2005) Evidence for the presence of disease-perturbed networks in prostate cancer cells by genomic and proteomic analyses: a systems approach to disease. Cancer Res 65(8):3081–3091

    PubMed  CAS  Google Scholar 

  2. Lin B, Wang J, Cheng Y (2008) Recent patents and advances in the next-generation sequencing technologies. Recent Pat Biomed Eng 1:60–67

    Article  CAS  Google Scholar 

  3. Niedringhaus TP et al (2011) Landscape of next-generation sequencing technologies. Anal Chem 83(12):4327–4341

    Article  PubMed  CAS  Google Scholar 

  4. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  PubMed  CAS  Google Scholar 

  5. Cheng L, Xu H, Lin B (2012) The application of the next-generation sequencing technologies in cancer research. In: Juan H-F, Huang H-C (eds) Systems biology-applications in cancer-related research. World Scientific, Singapore

    Google Scholar 

  6. Kim JB et al (2007) Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 316(5830):1481–1484

    Article  PubMed  CAS  Google Scholar 

  7. Cheng L et al (2010) Analysis of chemotherapy response programs in ovarian cancers by the next-generation sequencing technologies. Gynecol Oncol 117(2):159–169

    Article  PubMed  CAS  Google Scholar 

  8. Ruan X, Ruan Y (2011) Genome wide full-length transcript analysis using 5′ and 3′ paired-end-tag next generation sequencing (RNA-PET). Methods Mol Biol 809:535–562

    Article  Google Scholar 

  9. Benard J et al (1985) Characterization of a human ovarian adenocarcinoma line, IGROV1, in tissue culture and in nude mice. Cancer Res 45(10):4970–4979

    PubMed  CAS  Google Scholar 

  10. Okayama H, Berg P (1982) High-efficiency cloning of full-length cDNA. Mol Cell Biol 2(2):161–170

    PubMed  CAS  Google Scholar 

  11. D'Alessio JM, Gerard GF (1988) Second-strand cDNA synthesis with E. coli DNA polymerase I and RNase H: the fate of information at the mRNA 5′ terminus and the effect of E. coli DNA ligase. Nucleic Acids Res 16(5):1999–2014

    Article  PubMed  Google Scholar 

  12. Li R et al (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714

    Article  PubMed  CAS  Google Scholar 

  13. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858

    Article  PubMed  CAS  Google Scholar 

  14. Langmead B et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed  Google Scholar 

  15. Wang L et al (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    Article  PubMed  Google Scholar 

  16. Trapnell C et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  PubMed  CAS  Google Scholar 

  17. Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  PubMed  CAS  Google Scholar 

  18. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  PubMed  CAS  Google Scholar 

  19. Gao D et al (2010) A survey of statistical software for analysing RNA-seq data. Hum Genomics 5(1):56–60

    Article  PubMed  CAS  Google Scholar 

  20. Yao JQ, Yu F (2011) DEB: A web interface for RNA-seq digital gene expression analysis. Bioinformation 7(1):44–45

    Article  PubMed  Google Scholar 

  21. Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99(2):248–256

    Article  PubMed  Google Scholar 

  22. Hardcastle TJ, Kelly KA (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Li, L., Liu, J., Yu, W., Lou, X., Huang, B., Lin, B. (2013). Deep Transcriptome Profiling of Ovarian Cancer Cells Using Next-Generation Sequencing Approach. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics