Skip to main content

Microarray-Based Transcriptome Profiling of Ovarian Cancer Cells

  • Protocol
  • First Online:
  • 5031 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

Abstract

Transcriptome profiling is a powerful method for monitoring genes and their expression levels under a variety of conditions. Completion of the human genome and advances in high-throughput gene microarray instrumentation enables one to collect large amounts of data in a relatively short time. The challenge then becomes that of data analysis to identify patterns in expression changes and, from there, to relate the observed changes to functional compartments and pathways in cells, tissues, and organisms. Using cultured human ovarian cancer cells as an experimental model cellular system, we describe approaches that are used in analysis of the transcriptome, focusing on those genes encoding proteins and microRNAs. Coupled with other approaches described herein, one can also use the transcriptome to identify potential serum biomarkers, thus providing direction to what usually is a laborious search for low abundance proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. American Cancer Society http://www.cancer.org. Cancer Facts and Statistics. Last Revised: 10/13/2010 ed.

  2. Kwintkiewicz J, Giudice LC (2009) The interplay of insulin-like growth factors, gonadotropins, and endocrine disruptors in ovarian follicular development and function. Semin Reprod Med 27:43–51

    Article  PubMed  CAS  Google Scholar 

  3. Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK et al (2004) Focus on epithelial ovarian cancer. Cancer Cell 5:19–24

    Article  PubMed  CAS  Google Scholar 

  4. Mosgaard BJ, Lidegaard O, Kjaer SK, Schou G, Andersen AN (1997) Infertility, fertility drugs, and invasive ovarian cancer: a case-control study. Fertil Steril 67:1005–1012

    Article  PubMed  CAS  Google Scholar 

  5. Sanner K, Conner P, Bergfeldt K, Dickman P, Sundfeldt K et al (2009) Ovarian epithelial neoplasia after hormonal infertility treatment: long-term follow-up of a historical cohort in Sweden. Fertil Steril 91:1152–1158

    Article  PubMed  Google Scholar 

  6. Huhtaniemi I (2010) Are gonadotrophins tumorigenic–a critical review of clinical and experimental data. Mol Cell Endocrinol 329:56–61

    Article  PubMed  CAS  Google Scholar 

  7. Leung PC, Choi JH (2007) Endocrine signaling in ovarian surface epithelium and cancer. Hum Reprod Update 13:143–162

    Article  PubMed  CAS  Google Scholar 

  8. Ries L, Melbert D, Krapcho M, Stinchcomb D, Howlader N, et al (2008) SEER cancer statistics review http://seer.cancer.gov/csr/1975_2010/. In: Bethesda M (ed), National Cancer Institute.

  9. Choi JH, Wong AS, Huang HF, Leung PC (2007) Gonadotropins and ovarian cancer. Endocr Rev 28:440–461

    Article  PubMed  CAS  Google Scholar 

  10. Cui J, Miner BM, Eldredge JB, Warrenfeltz SW, Dam P et al (2011) Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation. BMC Cancer 11:280

    Article  PubMed  CAS  Google Scholar 

  11. Warrenfeltz SW, Lott SA, Palmer TM, Gray JC, Puett D (2008) Luteinizing hormone-induced up-regulation of ErbB-2 is insufficient stimulant of growth and invasion in ovarian cancer cells. Mol Cancer Res 6:1775–1785

    Article  PubMed  CAS  Google Scholar 

  12. Cui J, Eldredge JB, Xu Y, Puett D (2011) MicroRNA expression and regulation in human ovarian carcinoma cells by luteinizing hormone. PLoS One 6:e21730

    Article  PubMed  CAS  Google Scholar 

  13. Hubbell E, Liu WM, Mei R (2002) Robust estimators for expression analysis. Bioinformatics 18:1585–1592

    Article  PubMed  CAS  Google Scholar 

  14. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  15. Shamir R, Maron-Katz A, Tanay A, Linhart C, Steinfeld I et al (2005) EXPANDER–an integrative program suite for microarray data analysis. BMC Bioinformatics 6:232

    Article  PubMed  Google Scholar 

  16. Affymetrix whitepaper: Alternative Transcript Analysis Methods for Exon Arrays (2005) http://media.affymetrix.com/support/technical/whitepapers/exon_alt_transcript_analysis_whitepaper.pdf.

  17. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  18. Li G, Ma Q, Tang H, Paterson AH, Xu Y (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res 37:e101

    Article  PubMed  Google Scholar 

  19. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  Google Scholar 

  20. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  21. Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34:W720–724

    Article  PubMed  CAS  Google Scholar 

  22. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M et al (2009) PID: the pathway interaction database. Nucleic Acids Res 37:D674–679

    Article  PubMed  CAS  Google Scholar 

  23. Inza I, Larranaga P, Blanco R, Cerrolaza AJ (2004) Filter versus wrapper gene selection approaches in DNA microarray domains. Artif Intell Med 31:91–103

    Article  PubMed  Google Scholar 

  24. Cui J, Chen Y, Chou WC, Sun L, Chen L et al (2011) An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res 39:1197–1207

    Article  PubMed  CAS  Google Scholar 

  25. Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC et al (2005) NCBI GEO: mining millions of expression profiles–database and tools. Nucleic Acids Res 33:D562–566

    Article  PubMed  CAS  Google Scholar 

  26. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R et al (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6

    PubMed  CAS  Google Scholar 

  27. Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC et al (2001) The Stanford microarray database. Nucleic Acids Res 29:152–155

    Article  PubMed  CAS  Google Scholar 

  28. Liu Q, Cui J, Yang Q, Xu Y (2010) In-silico prediction of blood-secretory human proteins using a ranking algorithm. BMC Bioinformatics 11:250

    Article  PubMed  Google Scholar 

  29. Cui J, Liu Q, Puett D, Xu Y (2008) Computational prediction of human proteins that can be secreted into the bloodstream. Bioinformatics 24:2370–2375

    Article  PubMed  CAS  Google Scholar 

  30. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–144

    Article  PubMed  CAS  Google Scholar 

  31. Xiao F, Zuo Z, Cai G, Kang S, Gao X et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–110

    Article  PubMed  CAS  Google Scholar 

  32. Dai Y, Zhou X (2010) Computational methods for the identification of microRNA targets. Open Access Bioinformatics 2010:29–39

    Google Scholar 

  33. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  PubMed  CAS  Google Scholar 

  34. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH (DK069711, DK033973, and GM075331) and NSF (DBI-0354771, ITR-IIS-0407204, CCF-0621700, and DBI-0542119).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Cui, J., Xu, Y., Puett, D. (2013). Microarray-Based Transcriptome Profiling of Ovarian Cancer Cells. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics