Skip to main content

Instruments for Automated Peptide Synthesis

  • Protocol
  • First Online:
Peptide Synthesis and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1047))

Abstract

This chapter provides an introduction to and an overview of current instrumentation for solid-phase peptide synthesis (SPPS). Presently, the two most common designs differ in their mode of liquid handling: the first relies on valves and valve blocks for distribution of reagents, while the second uses a robotic platform. They also differ in their mode of mixing the reactants in the reaction vessel, where the former can utilize sparging, 180° rotational shaking, or vortexing, while the latter typically uses vortexing. Valve-based instruments are often single channel (one peptide at a time), but can also be expanded to allow parallel synthesis of up to 12 and even 24 peptides, however, at the price of added complexity. Valve systems often use inert gas for their operation. The X–Y robotic platforms are ideal for parallel synthesis of large numbers of peptides up to 192 and even peptide libraries. However, although less common, the robotic platform is also very suitable for single-channel operation and can also be used for operations under inert gas. Some single-channeled synthesizers are available with UV feedback monitoring of the Fmoc removal which can be useful for some applications. Importantly, single-channel synthesizers can be equipped with fast and precise microwave heating to accelerate the synthesis and to overcome synthetic difficulties. A whole range of synthesizers with different designs are commercially available. The choice of peptide synthesizer will depend on intended application, for example on the type of chemistry, scale, and the number of peptides that are required and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrifield RB (1965) Automated synthesis of peptides. Science 150:178–185

    Article  PubMed  CAS  Google Scholar 

  2. Merrifield RB, Stewart JM (1965) Automated peptide synthesis. Nature 207:522–523

    Article  PubMed  CAS  Google Scholar 

  3. Merrifield RB, Stewart JM, Jernberg N (1966) Instrument for automated synthesis of peptides. Anal Chem 38:1905–1914

    Article  PubMed  CAS  Google Scholar 

  4. Brunfeldt K, Halstrqm J, Roepstorff P (1969) A punched tape controlled peptide synthesizer. Acta Chem Scand 23:2830–2838

    Article  CAS  Google Scholar 

  5. Gutte B, Merrifield RB (1971) The synthesis of ribonuclease A. J Biol Chem 246:1922–1941

    PubMed  CAS  Google Scholar 

  6. Schnorrenberg G, Wiesmüller K-H, Beck-Sickinger AG et al (1990) In: Giralt E, Andreu D (eds) Peptides 1990, Proceedings of 21st EPS, ESCOM Science Publishers B.V., pp 202–203

    Google Scholar 

  7. Daniels SB, Hantman SF, Solé NA et al (1996) In: Ramage R, Epton R (eds) Peptides 1996, Proceeings of 24th EPS, Mayflower Scientific Ltd., pp 323–324

    Google Scholar 

  8. Saneii HH, Shannon JD, Miceli RM et al (1993) In: Hodges RS, Smith JA (eds) Peptides: chemistry, structure and biology. Proceedings of 13th APS, ESCOM Science Publisher B.V., pp 1018–1020.

    Google Scholar 

  9. Cameron LR, Holder JL, Meldal M et al (1988) Peptide synthesis. Part 13. Feedback control in solid phase synthesis. Use of fluorenylmethoxycarbonyl amino acid 3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl esters in a fully automated system. J Chem Soc Perkin Trans 1:2895–2901

    Article  Google Scholar 

  10. Schnorrenberg G, Gerhardt H (1989) Fully automatic simultaneous multiple peptide synthesis in micromolar scale—rapid synthesis of series of peptides for screening in biological assays. Tetrahedron 45:7759–7764

    Article  CAS  Google Scholar 

  11. Gausepohl H, Boulin C, Kraft M et al (1992) Automated multiple peptide-synthesis. Pept Res 5:315–320

    PubMed  CAS  Google Scholar 

  12. Carpino LA, Han GY (1970) 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92:5748–5749

    Article  CAS  Google Scholar 

  13. Dryland A, Sheppard RC (1986) Peptide synthesis. Part 8. A system for solid-phase synthesis under low pressure continuous flow conditions. J Chem Soc Perkin Trans 1:125–137

    Article  Google Scholar 

  14. Lebl M (2003) Centrifugation based automated synthesis technologies. J Lab Automation 30:30–35

    Article  Google Scholar 

  15. Lebl M (1999) New technique for high-throughput synthesis. Bioorg Med Chem Lett 9:1305–1310

    Article  PubMed  CAS  Google Scholar 

  16. Blixt O, Clo E, Nudelman AS et al (2010) A high-throughput O-glycopeptide discovery platform for seromic profiling. J Prot Res 9:5250–5261

    Article  CAS  Google Scholar 

  17. Sørensen KK, Maolanon NM, Simonsen JB, Stougaard J, Jensen KJ (2013), Linear chemical synthesis of LysM domains, in preparation

    Google Scholar 

  18. Pedersen SL, Holst B, Vrang N et al (2009) Modifying the conserved C-terminal tyrosine of the peptide hormone PYY3-36 to improve Y2 receptor selectivity. J Pept Sci 15:753–759

    Article  PubMed  CAS  Google Scholar 

  19. Pedersen SL, Steentoft C, Vrang N et al (2010) Glyco-scan: varying glycosylation in the sequence of the peptide hormone PYY3-36 and its effect on receptor selectivity. Chembiochem 11:366–374

    Article  PubMed  CAS  Google Scholar 

  20. Gabriel C, Gabriel S, Grant EH et al (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213–224

    Article  CAS  Google Scholar 

  21. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  22. Bacsa B, Horváti K, Bõsze S et al (2008) Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies. J Org Chem 73:7532–7542

    Article  PubMed  CAS  Google Scholar 

  23. Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73:36–47

    Article  PubMed  CAS  Google Scholar 

  24. Robinson J, Kingman S, Irvine D et al (2010) Understanding microwave heating effects in single mode type cavities-theory and experiment. Phys Chem Chem Phys 12:4750–4758

    Article  PubMed  CAS  Google Scholar 

  25. Coantic S, Subra G, Martinez J (2008) Microwave-assisted solid phase peptide synthesis on high loaded resins. Int J Pept Res Ther 14:143–147

    Article  CAS  Google Scholar 

  26. Murray JK, Gellman SH (2007) Parallel synthesis of peptide libraries using microwave irradiation. Nat Protocols 2:624–631

    Article  CAS  Google Scholar 

  27. Murray JK, Sadowsky JD, Scalf M et al (2008) Exploration of structure—activity relationships among foldamer ligands for a specific protein binding site via parallel and split-and-mix library synthesis. J Comb Chem 10:204–215

    Article  PubMed  CAS  Google Scholar 

  28. Murray JK, Gellman SH (2005) Microwave-assisted parallel synthesis of a 14-helical β-peptide library. J Comb Chem 8:58–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Pedersen, S.L., Jensen, K.J. (2013). Instruments for Automated Peptide Synthesis. In: Jensen, K., Tofteng Shelton, P., Pedersen, S. (eds) Peptide Synthesis and Applications. Methods in Molecular Biology, vol 1047. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-544-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-544-6_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-543-9

  • Online ISBN: 978-1-62703-544-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics