Skip to main content

Detection of rpoB Gene Mutations Using Helicase-Dependent Amplification

  • Protocol
  • First Online:
Nucleic Acid Detection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1039))

Abstract

For patients infected with tuberculosis, detection of rpoB gene mutations is critical for diagnosing drug-resistant strains of the causative pathogen, Mycobacterium tuberculosis (MTB). Traditional approaches to drug resistance include culture, which is very slow. Recently described real-time polymerase chain reaction approaches have addressed turnaround time but at relatively high cost. Here, we describe a novel amplification method, termed blocked-primer helicase-dependent amplification, for amplifying rpoB gene sequences in MTB. Resultant amplicon is hybridized to a probe set arrayed on a modified silicon-based chip to determine if there is any mutation in that region. Using this method, we could detect the majority of clinically relevant mutations in rpoB gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Anti-Tuberculosis Drug Resistance in the World: Fourth Global Report (2008) The WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance. World Health Organization, Geneva, Switzerland, Publication no. WHO/HTM/TB/2008.394

    Google Scholar 

  2. Caws M, Duy PM, Tho DQ, Lan NT, Hoa DV, Farrar J (2006) Mutations prevalent among rifampin- and isoniazid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. J Clin Microbiol 44:2333–2337

    Article  PubMed  CAS  Google Scholar 

  3. Chan RC, Hui M, Chan EW, Au TK, Chin ML, Yip CK et al (2007) Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong. J Antimicrob Chemother 59:866–873

    Article  PubMed  CAS  Google Scholar 

  4. Heep M, Brandstätter B, Rieger U, Lehn N, Richter E, Rüsch-Gerdes S et al (2001) Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates. J Clin Microbiol 39:107–110

    Article  PubMed  CAS  Google Scholar 

  5. Herrera L, Jiménez S, Valverde A, García-Aranda MA, Sáez-Nieto JA (2003) Molecular analysis of rifampin-resistant Mycobacterium tuberculosis isolated in Spain (1996-2001). Description of new mutations in the rpoB gene and review of the literature. Int J Antimicrob Agents 21:403–408

    Article  PubMed  CAS  Google Scholar 

  6. Mani C, Selvakumar N, Kumar V, Narayanan S, Narayanan PR (2003) Comparison of DNA sequencing, PCR-SSCP and PhaB assays with indirect sensitivity testing for detection of rifampin resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 7:652–659

    PubMed  CAS  Google Scholar 

  7. Rossau R, Traore H, De Beenhouwer H, Mijs W, Jannes G, De Rijk P et al (1997) Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob Agents Chemother 41:2093–2098

    PubMed  CAS  Google Scholar 

  8. Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y et al (1998) Relationship between antimycobacterial activities of rifampin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J Antimicrob Chemother 42:621–628

    Article  PubMed  CAS  Google Scholar 

  9. Millen SJ, Uys PW, Hargrove J, van Helden PD, Williams BG (2008) The effect of diagnostic delays on the drop-out rate and the total delay to diagnosis of tuberculosis. PLoS One 3:e1933

    Article  PubMed  Google Scholar 

  10. Mitnick CD, Appeton SC, Shin SS (2008) Epidemiology and treatment of multidrug resistant tuberculosis. Semin Respir Crit Care Med 29:499–524

    Article  PubMed  Google Scholar 

  11. Mitnick CD, Shin SS, Seung KJ, Rich ML, Atwood SS, Furin JJ et al (2008) Comprehensive treatment of extensively drug-resistant tuberculosis. N Engl J Med 359:563–574

    Article  PubMed  CAS  Google Scholar 

  12. Perkins MD, Cunningham J (2007) Facing the crisis: improving the diagnosis of tuberculosis in the HIV era. J Infect Dis 196:S15–S27

    Article  PubMed  Google Scholar 

  13. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F et al (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363:1005–1015

    Article  PubMed  CAS  Google Scholar 

  14. Nordhoek GT, van Embden JD, Kolk AH (1996) Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis: an international collaborative quality control study among 30 laboratories. J Clin Microbiol 34:2522–2525

    Google Scholar 

  15. Pai M, Kalantri S, Dheda K (2006) New tools and emerging technologies for the diagnosis of tuberculosis: Part II. Active tuberculosis and drug resistance. Expert Rev Mol Diagn 6:423–432

    Article  PubMed  CAS  Google Scholar 

  16. Suffys P, Palomino JC, Cardaso Leao S, Espitia C, Cataldi A, Alito A et al (2000) Evaluation of the polymerase chain reaction for the detection of Mycobaterium tuberculosis. Int J Tuberc Lung Dis 4:179–183

    PubMed  CAS  Google Scholar 

  17. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ et al (1993) Detection of rifampin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–650

    Article  PubMed  CAS  Google Scholar 

  18. Ao W, Aldous S, Woodruff E, Hicke B, Larry R, Kreiswirth B et al (2012) Rapid detection of rpoB gene mutations conferring rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol 50:2433–2440

    Article  PubMed  CAS  Google Scholar 

  19. Dobosy JR, Rose SD, Beltz KR, Rupp SM, Powers KM, Behlke MA et al (2011) RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol 11:80

    Article  PubMed  CAS  Google Scholar 

  20. Jenison R, La H, Haeberli A, Ostroff R, Polisky B (2001) Silicon-based biosensors for rapid detection of protein or nucleic acid targets. Clin Chem 47:1894–1900

    PubMed  CAS  Google Scholar 

  21. Miller LP, Crawford JT, Shinnick TM (1994) The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agents Chemother 38:805–811

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Adrianne Clifford and all other members of the Research Group at Great Basin Corporation for technical assistance and Steve Aldous for financial support for this project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Ao, W., Jenison, R. (2013). Detection of rpoB Gene Mutations Using Helicase-Dependent Amplification. In: Kolpashchikov, D., Gerasimova, Y. (eds) Nucleic Acid Detection. Methods in Molecular Biology, vol 1039. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-535-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-535-4_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-534-7

  • Online ISBN: 978-1-62703-535-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics