Skip to main content

Assaying Protein S-Acylation in Plants

  • Protocol
  • First Online:
G Protein-Coupled Receptor Signaling in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1043))

Abstract

S-acylation is increasingly being recognized as an important posttranslational modification of proteins controlling activity, subcellular localization, microdomain residence, and stability. Heterotrimeric G-proteins and GPCRs are particularly well studied S-acylated proteins, and fast, cheap, reliable methods are required for the analysis of S-acylation states of these proteins. Various approaches have been developed to study S-acylation, but they are time consuming, expensive, frequently require radiolabels and generally only suitable for cell culture, making them impractical for work in plant systems. Here a rapid and inexpensive method is described for the analysis of the S-acylation state of AGG2 that can be performed on any cell or tissue sample using standard laboratory equipment and methods. This method is also applicable to any protein that can be detected by western blotting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ovchinnikov YA, Abdulaev NG, Bogachuk AS (1988) Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett 230:1–5

    Article  PubMed  CAS  Google Scholar 

  2. Adjobo-Hermans MJ, Goedhart J, Gadella TW Jr (2006) Plant G protein heterotrimers require dual lipidation motifs of Galpha and Ggamma and do not dissociate upon activation. J Cell Sci 119:5087–5097

    Article  PubMed  CAS  Google Scholar 

  3. Zeng Q, Wang X, Running MP (2007) Dual lipid modification of Arabidopsis Ggamma-subunits is required for efficient plasma membrane targeting. Plant Physiol 143:1119–1131

    Article  PubMed  CAS  Google Scholar 

  4. Running MP, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N, Yalovsky S (2004) Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci USA 101:7815–7820

    Article  PubMed  CAS  Google Scholar 

  5. Hemsley PA, Taylor L, Grierson CS (2008) Assaying protein palmitoylation in plants. Plant Methods 4:2

    Article  PubMed  Google Scholar 

  6. Drisdel RC, Green WN (2004) Labeling and quantifying sites of protein palmitoylation. Biotechniques 36:276–285

    PubMed  CAS  Google Scholar 

  7. Hou H, Subramanian K, LaGrassa TJ, Markgraf D, Dietrich LE, Urban J, Decker N, Ungermann C (2005) The DHHC protein Pfa3 affects vacuole-associated palmitoylation of the fusion factor Vac8. Proc Natl Acad Sci USA 102:17366–17371

    Article  PubMed  CAS  Google Scholar 

  8. Hemsley PA, Weimar T, Lilley KS, Dupree P, Grierson CS (2013) A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. New Phytol 197:805–814

    Article  PubMed  CAS  Google Scholar 

  9. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hemsley, P.A. (2013). Assaying Protein S-Acylation in Plants. In: Running, M. (eds) G Protein-Coupled Receptor Signaling in Plants. Methods in Molecular Biology, vol 1043. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-532-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-532-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-531-6

  • Online ISBN: 978-1-62703-532-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics