Skip to main content

Isochronal Visualization of Transcription and Proteasomal Proteolysis in Cell Culture or in the Model Organism, Caenorhabditis elegans

  • Protocol
  • First Online:
Imaging Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1042))

Abstract

Investigation of differential gene regulation by protein degradation requires analysis of the spatial and temporal association between proteolysis and transcription. Here, we describe the isochronal visualization of proteasomal proteolysis and transcription in cell culture or in vivo in the model organism Caenorhabditis elegans. This includes localization of proteasome-dependent proteolysis by fluorescent degradation products of model and endogenous substrates of the proteasome in combination with immunolabelling of RNA polymerase II and transcription in situ run-on assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weake VM, Workman JL (2010) Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 11:426–437

    Article  PubMed  CAS  Google Scholar 

  2. Kleinschmidt JA, Hugle B, Grund C, Franke WW (1983) The 22 cylinder particles of Xenopus laevis. I. Biochemical and electron microscopic characterization. Eur J Cell Biol 32:143–156

    PubMed  CAS  Google Scholar 

  3. Hugle B, Kleinschmidt JA, Franke WW (1983) The 22S cylinder particles of Xenopus laevis. II. Immunological characterization and localization of their proteins in tissues and cultured cells. Eur J Cell Biol 32:157–163

    PubMed  CAS  Google Scholar 

  4. Rockel TD, Stuhlmann D, von Mikecz A (2005) Proteasomes degrade proteins in focal subdomains of the human cell nucleus. J Cell Sci 118:5231–5242

    Article  PubMed  CAS  Google Scholar 

  5. Muratani M, Tansey WP (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4:192–201

    Article  PubMed  CAS  Google Scholar 

  6. von Mikecz A (2006) The nuclear ubiquitin-proteasome system. J Cell Sci 119:1977–1984

    Article  Google Scholar 

  7. Kodadek T (2010) No splicing, no dicing: non-proteolytic roles of the ubiquitin-proteasome system in transcription. J Biol Chem 285:2221–2226

    Article  PubMed  CAS  Google Scholar 

  8. Geng F, Wenzel S, Tansey WP (2012) Ubiquitin and proteasomes in transcription. Annu Rev Biochem 81:177–201

    Article  PubMed  CAS  Google Scholar 

  9. Wansink DG, Schul W, van der Kraan I et al (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122:283–293

    Article  PubMed  CAS  Google Scholar 

  10. Stein GS, Zaidi SK, Braastad CD et al (2003) Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol 13:584–592

    Article  PubMed  CAS  Google Scholar 

  11. Trinkle-Mulcahy L, Lamond AI (2007) Toward a high-resolution view of nuclear dynamics. Science 318:1402–1407

    Article  PubMed  CAS  Google Scholar 

  12. Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800

    Article  PubMed  CAS  Google Scholar 

  13. Scharf A, Grozdanov PN, Veith R et al (2011) Distant positioning of proteasomal proteolysis relative to actively transcribed genes. Nucleic Acids Res 39:4612–4627

    Article  PubMed  CAS  Google Scholar 

  14. Gillette TG, Gonzalez F, Delahodde A et al (2004) Physical and functional association of RNA polymerase II and the proteasome. Proc Natl Acad Sci U S A 101:5904–5909

    Article  PubMed  CAS  Google Scholar 

  15. Anindya R, Aygün O, Svejstrup JQ (2007) Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol Cell 28:386–397

    Article  PubMed  CAS  Google Scholar 

  16. Selth LA, Sigurdsson S, Svejstrup JQ (2010) Transcript elongation by RNA polymerase II. Annu Rev Biochem 79:271–293

    Article  PubMed  CAS  Google Scholar 

  17. Boisvert FM, Hendzel MJ, Bazett-Jones DP (2000) Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 148:283–292

    Article  PubMed  CAS  Google Scholar 

  18. Kießlich A, von Mikecz A, Hemmerich P (2002) Cell cycle-dependent association of PML bodies with sites of active transcription in nuclei of mammalian cells. J Struct Biol 140:167–179

    Article  PubMed  Google Scholar 

  19. Egloff S, Murphy S (2008) Cracking the RNA polymerase II CTD code. Trends Genet 24:280–288

    Article  PubMed  CAS  Google Scholar 

  20. Svejstrup JQ (2004) The RNA polymerase II transcription cycle: cycling through chromatin. Biochim Biophys Acta 1677:64–73

    Article  PubMed  CAS  Google Scholar 

  21. Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20:2922–2936

    Article  PubMed  CAS  Google Scholar 

  22. Warren SL, Landolfi AS, Curtis C, Morrow JS (1992) Cytostellin: a novel, highly conserved protein that undergoes continuous redistribution during the cell cycle. J Cell Sci 103:381–388

    PubMed  CAS  Google Scholar 

  23. Patturajan M, Schulte RJ, Sefton BM et al (1998) Growth-related changes in phosphorylation of yeast RNA polymerase II. J Biol Chem 273:4689–4694

    Article  PubMed  CAS  Google Scholar 

  24. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380

    Article  PubMed  CAS  Google Scholar 

  25. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72

    Article  PubMed  CAS  Google Scholar 

  26. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102

    Article  PubMed  CAS  Google Scholar 

  27. Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616

    Article  PubMed  CAS  Google Scholar 

  28. Finley D (2002) Ubiquitin chained and crosslinked. Nat Cell Biol 4:E121–E123

    Article  PubMed  CAS  Google Scholar 

  29. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  PubMed  CAS  Google Scholar 

  30. Newton K, Matsumoto ML, Wertz IE et al (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678

    Article  PubMed  CAS  Google Scholar 

  31. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  32. Hope IA (1999) Background on Caenorhabditis elegans. In: Hope IA (ed) C. elegans. A practical approach. Oxford University Press, Oxford, New York, pp 1–15

    Google Scholar 

  33. Stiernagel T (1999) Maintenance of C. elegans. In: Hope IA (ed) C. elegans. A practical approach. Oxford University Press, Oxford, New York, pp 51–67

    Google Scholar 

  34. Hall DH, Altun ZF (2008) Introduction to C. elegans anatomy. In: Hall DH, Altun ZF (eds) C. elegans Atlas. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 1–15

    Google Scholar 

  35. Edgar LG, Wolf N, Wood WB (1994) Early transcription in Caenorhabditis elegans embryos. Development 120:443–451

    PubMed  CAS  Google Scholar 

  36. Seydoux G, Mello CC, Pettit J et al (1996) Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382:713–716

    Article  PubMed  CAS  Google Scholar 

  37. Baugh LR, Hill AA, Slonim DK et al (2003) Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development 130:889–900

    Article  PubMed  CAS  Google Scholar 

  38. Seydoux G, Dunn MA (1997) Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124:2191–2201

    PubMed  CAS  Google Scholar 

  39. McGhee JD, Krause MW (1997) Transcription factors and transcription regulation. In: Blumenthal T, Meyer BJ, Priess JR, Riddle DL (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 147–184

    Google Scholar 

  40. Kipreos ET (2005) Ubiquitin-mediated pathways in C. elegans, In: The C. elegans Research Community (ed) WormBook, doi/10.1895/wormbook.1.36.1, http://www.wormbook.org

  41. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  42. Davy A, Bello P, Thierry-Mieg N et al (2001) A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep 2:821–828

    Article  PubMed  CAS  Google Scholar 

  43. Scharf A, Rockel TD, von Mikecz A (2007) Localization of proteasomes and proteasomal proteolysis in the mammalian interphase cell nucleus by systematic application of immunocytochemistry. Histochem Cell Biol 127:591–601

    Article  PubMed  CAS  Google Scholar 

  44. von Mikecz A, Chen M, Rockel T, Scharf A (2008) The nuclear ubiquitin-proteasome system: visualization of proteasomes, protein aggregates, and proteolysis in the cell nucleus. Method Mol Biol 463:191–202

    Article  Google Scholar 

  45. Darzacq X, Yao J, Larson DR et al (2009) Imaging transcription in living cells. Annu Rev Biophys 38:173–196

    Article  PubMed  CAS  Google Scholar 

  46. Mais C, Wright JE, Prieto JL et al (2005) UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 19:50–64

    Article  PubMed  CAS  Google Scholar 

  47. Janicki SM, Tsukamoto T, Salghetti SE et al (2004) From silencing to gene expression: real-time analysis in single cells. Cell 116:683–698

    Article  PubMed  CAS  Google Scholar 

  48. Darzacq X, Kittur N, Roy S et al (2006) Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J Cell Biol 173:207–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the von Mikecz laboratory is supported by the German Science Foundation (DFG) through grants MI486/7-1 and GRK1033.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

von Mikecz, A., Scharf, A. (2013). Isochronal Visualization of Transcription and Proteasomal Proteolysis in Cell Culture or in the Model Organism, Caenorhabditis elegans . In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 1042. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-526-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-526-2_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-525-5

  • Online ISBN: 978-1-62703-526-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics