Skip to main content

The Dynamics of DNA Damage Repair and Transcription

  • Protocol
  • First Online:
Book cover Imaging Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1042))

Abstract

Recent advances have led to several systems to study transcription from defined loci in living cells. It has now become possible to address long-standing questions regarding the interplay between the processes of DNA damage repair and transcription—two disparate processes that can occur on the same stretch of chromatin and which both lead to extensive chromatin change. Here we describe the development of a system to create enzymatically induced DNA double-strand breaks (DSBs) at a site of inducible transcription and methods to study the interplay between these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lukas C, Falck J, Bartkova J, Bartek J, Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5(3):255–260

    Article  PubMed  CAS  Google Scholar 

  2. Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J et al (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173(2):195

    Article  PubMed  CAS  Google Scholar 

  3. Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118(6):699–713

    Article  PubMed  CAS  Google Scholar 

  4. Lisby M, Mortensen UH, Rothstein R (2003) Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5(6):572–577

    Article  PubMed  CAS  Google Scholar 

  5. Berkovich E, Monnat RJ, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9(6):683–690

    Article  PubMed  CAS  Google Scholar 

  6. Pankotai T, Bonhomme C, Chen D, Soutoglou E (2012) DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks. Nat Struct Mol Biol 19(3):276–282

    Article  PubMed  CAS  Google Scholar 

  7. Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D et al (2010) High-­resolution profiling of |[gamma]|H2AX around DNA double strand breaks in the mammalian genome. EMBO J 29(8):1446–1457

    Article  PubMed  CAS  Google Scholar 

  8. Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T et al (2007) Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 9(6):675–682

    Article  PubMed  CAS  Google Scholar 

  9. Honma M, Izumi M, Sakuraba M, Tadokoro S, Sakamoto H, Wang W et al (2003) Deletion, rearrangement, and gene conversion; genetic consequences of chromosomal double-strand breaks in human cells. Environ Mol Mutagen 42(4):288–298

    Article  PubMed  CAS  Google Scholar 

  10. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14(12):8096–8106

    PubMed  CAS  Google Scholar 

  11. Anindya R, Ayg\ün O, Svejstrup JQ (2007) Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol Cell 28(3):386–397

    Article  PubMed  CAS  Google Scholar 

  12. Svejstrup JQ (2007) Contending with transcriptional arrest during RNAPII transcript elongation. Trends Biochem Sci 32(4):165–171

    Article  PubMed  CAS  Google Scholar 

  13. Solovjeva LV, Svetlova MP, Chagin VO, Tomilin NV (2007) Inhibition of transcription at radiation-induced nuclear foci of phosphorylated histone H2AX in mammalian cells. Chromosome Res 15(6):787–797

    Article  PubMed  CAS  Google Scholar 

  14. Kruhlak M, Crouch EE, Orlov M, Montano C, Gorski SA, Nussenzweig A et al (2007) The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447(7145):730–734

    Article  PubMed  CAS  Google Scholar 

  15. Shanbhag NM, Rafalska-Metcalf IU, Balane-­Bolivar C, Janicki SM, Greenberg RA (2010) ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141(6):970–981

    Article  PubMed  CAS  Google Scholar 

  16. Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV et al (2004) From silencing to gene expression: real-time analysis in single cells. Cell 116(5):683–698

    Article  PubMed  CAS  Google Scholar 

  17. Rafalska-Metcalf IU, Janicki SM (2007) Show and tell: visualizing gene expression in living cells. J Cell Sci 120(14):2301–2308

    Article  PubMed  CAS  Google Scholar 

  18. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2(4):437–445

    Article  PubMed  CAS  Google Scholar 

  19. Yunger S, Shav-Tal Y (2011) Imaging mRNAs in living mammalian cells. Methods Mol Biol 714:249–263

    Article  PubMed  CAS  Google Scholar 

  20. Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA 95(18):10570–10575

    Article  PubMed  CAS  Google Scholar 

  21. Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK (1998) Structure of foki has implications for DNA cleavage. Proc Natl Acad Sci USA 95(18):10564–10569

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Greenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shanbhag, N.M., Greenberg, R.A. (2013). The Dynamics of DNA Damage Repair and Transcription. In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 1042. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-526-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-526-2_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-525-5

  • Online ISBN: 978-1-62703-526-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics