Skip to main content

Single-Particle Tracking for Studying the Dynamic Properties of Genomic Regions in Live Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1042))

Abstract

The appropriate functioning of living cells depends on a variety of dynamic processes that necessitate delicate motion, transportation, association, and disassociation in time and space. Different dynamic patterns such as directed motion, normal diffusion, and restricted diffusion take part at different length scales, and their identification serves as a tool for exploring biochemical processes. Here we describe single-particle tracking which is a powerful method that allows the characterization of dynamic processes on the single-molecule or single-particle level with nanometer spatial and sub-second temporal precision. In particular, we describe the cell preparation procedures, microscopy imaging, and image analysis processes for following telomere dynamics in living mammalian cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12):910–919

    Article  PubMed  CAS  Google Scholar 

  2. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300(5616):87–91. doi:10.1126/science.1082520

    Article  PubMed  CAS  Google Scholar 

  3. Saxton MJ (2008) Single-particle tracking: connecting the dots. Nat Methods 5(8):671–672

    Article  PubMed  CAS  Google Scholar 

  4. Mueller F, Mazza D, Stasevich TJ, McNally JG (2010) FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr Opin Cell Biol 22:403–411. doi:10.1016/j.ceb.2010.03.002

    Article  PubMed  CAS  Google Scholar 

  5. Schwille P, Haupts U, Maiti S, Webb WW (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77:2251–2265. doi:10.1016/S0006-3495(99)77065-7

    Article  PubMed  CAS  Google Scholar 

  6. Weidemann T, Wachsmuth M, Ta K, Müller G, Waldeck W, Langowski J (2003) Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. J Mol Biol 334:229–240. doi:10.1016/j.jmb.2003.08.063

    Article  PubMed  CAS  Google Scholar 

  7. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  PubMed  CAS  Google Scholar 

  8. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065. doi:10.1126/science.1084398

    Article  PubMed  CAS  Google Scholar 

  9. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26(1):373–399. doi:10.1146/annurev.biophys.26.1.373

    Article  PubMed  CAS  Google Scholar 

  10. Barkai E, Garini Y, Metzler R (2012) Strange kinetics of single molecules in living cells. Physics Today 65(8):29–35

    Article  CAS  Google Scholar 

  11. Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys Math Gen 37(31):R161

    Article  Google Scholar 

  12. Weiss M, Elsner M, Kartberg F, Nilsson T (2004) Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87(5):3518–3524

    Article  PubMed  CAS  Google Scholar 

  13. Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, Barkai E, Garini Y (2009) Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys Rev Lett 103:1–4. doi:10.1103/PhysRevLett.103.018102

    Article  Google Scholar 

  14. Platani M, Goldberg I, Lamond AI, Swedlow JR (2002) Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol 4(7):502–508

    Article  PubMed  CAS  Google Scholar 

  15. Golding I, Cox EC (2004) RNA dynamics in live Escherichia coli cells. Proc Natl Acad Sci USA 101(31):11310–11315. doi:10.1073/pnas.0404443101

    Article  PubMed  CAS  Google Scholar 

  16. Banks DS, Fradin C (2005) Anomalous diffusion of proteins due to molecular crowding. Biophys J 89(5):2960–2971

    Article  PubMed  CAS  Google Scholar 

  17. Saxton MJ (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J 66(2 part 1):394–401

    Article  PubMed  CAS  Google Scholar 

  18. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1):1–77

    Article  CAS  Google Scholar 

  19. Saxton MJ (2007) A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. Biophys J 92(4):1178–1191

    Article  PubMed  CAS  Google Scholar 

  20. Mattern KA, Swiggers SJJ, Nigg AL, Löwenberg B, Houtsmuller AB, Zijlmans JMJM (2004) Dynamics of protein binding to telomeres in living cells: implications for telomere structure and function. Mol Cell Biol 24:5587–5594

    Article  PubMed  CAS  Google Scholar 

  21. Molenaar C, Wiesmeijer K, Verwoerd NP, Khazen S, Eils R, Tanke HJ, Dirks RW (2003) Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J 22:6631–6641

    Article  PubMed  CAS  Google Scholar 

  22. Brody Y, Neufeld N, Bieberstein N, Causse SZ, Böhnlein E-M, Neugebauer KM, Darzacq X, Shav-Tal Y (2011) The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol 9:e1000573. doi:10.1371/journal.pbio.1000573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Israel Science Foundation grants No. 985/08, 1729/08, 1793/07, and 507/07 and the Wolfson Foundation grant 2008.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Berger, I.B., Kepten, E., Garini, Y. (2013). Single-Particle Tracking for Studying the Dynamic Properties of Genomic Regions in Live Cells. In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 1042. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-526-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-526-2_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-525-5

  • Online ISBN: 978-1-62703-526-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics