Skip to main content

Measuring Inflammasome Activation in Response to Bacterial Infection

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1040))

Abstract

Inflammasomes are multi-protein signaling platforms assembled in response to viral and bacterial pathogens as well as endogenous danger signals. Inflammasomes serve as activation platforms for the mammalian cysteine protease caspase-1, a central mediator of innate immunity. The hallmarks of inflammasome activation are the processing of caspase-1, the maturation and release of interleukin-1β (IL-1β) and the induction of pyroptosis, a lytic inflammatory cell death. This protocol describes methods for studying inflammasome activation in response to bacterial pathogens in bone-marrow derived murine macrophages (BMDMs). In particular, we outline the protocols to measure cytokine maturation by ELISA and pyroptosis by the release of Lactate Dehydrogenase (LDH). In addition, we describe methods to visualize endogenous ASC specks or foci in infected cells and to study the release of processed caspase-1, caspase-11 and mature cytokines into the cell supernatant by Western blotting. General considerations are discussed to design and optimize the infection protocol for the study of inflammasome activation by other bacterial pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schroder K, Muruve DA, Tschopp J (2009) Innate immunity: cytoplasmic DNA sensing by the AIM2 inflammasome. Curr Biol 19(6):R262–R265. doi:S0960-9822(09)00677-0 [pii] 10.1016/j.cub.2009.02.011

    Article  PubMed  CAS  Google Scholar 

  2. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426. doi:S1097276502005993 [pii]

    Article  PubMed  CAS  Google Scholar 

  3. Lamkanfi M (2011) Emerging inflammasome effector mechanisms. Nat Rev Immunol 11(3):213–220. doi:nri2936 [pii] 10.1038/nri2936

    Article  PubMed  CAS  Google Scholar 

  4. Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132(5):818–831. doi:S0092-8674(08)00111-6 [pii] 10.1016/j.cell.2007.12.040

    Article  PubMed  CAS  Google Scholar 

  5. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916. doi:73/4/1907 [pii] 10.1128/IAI.73.4.1907-1916.2005

    Article  PubMed  CAS  Google Scholar 

  6. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38(2):240–244. doi:ng1724 [pii] 10.1038/ng1724

    Article  PubMed  CAS  Google Scholar 

  7. Hornung V, Latz E (2010) Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol 40(3):620–623. doi:10.1002/eji.200940185

    Article  PubMed  CAS  Google Scholar 

  8. Skeldon A, Saleh M (2011) The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front Microbiol 2:15. doi:10.3389/fmicb.2011.00015

    Article  PubMed  CAS  Google Scholar 

  9. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218. doi:10.1038/nature02664 nature02664 [pii]

    Article  PubMed  CAS  Google Scholar 

  10. Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, Nunez G (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281(46):35217–35223. doi:M604933200 [pii] 10.1074/jbc.M604933200

    Article  PubMed  CAS  Google Scholar 

  11. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Nunez G (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7(6):576–582. doi:ni1346 [pii] 10.1038/ni1346

    Article  PubMed  CAS  Google Scholar 

  12. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7(6):569–575. doi:ni1344 [pii] 10.1038/ni1344

    Article  PubMed  CAS  Google Scholar 

  13. Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2(3):e18. doi:10.1371/journal.ppat.0020018

    Article  PubMed  Google Scholar 

  14. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107(7):3076–3080. doi:0913087107 [pii] 10.1073/pnas.0913087107

    Article  PubMed  CAS  Google Scholar 

  15. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592–595. doi:10.1038/nature10394 nature10394 [pii]

    Article  PubMed  CAS  Google Scholar 

  16. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600. doi:10.1038/nature10510 nature10510 [pii]

    Article  PubMed  CAS  Google Scholar 

  17. Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E, Eisenlohr L, Landel CP, Alnemri ES (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11(5):385–393. doi:ni.1859 [pii] 10.1038/ni.1859

    Article  PubMed  CAS  Google Scholar 

  18. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402. doi:ni.1864 [pii] 10.1038/ni.1864

    Article  PubMed  CAS  Google Scholar 

  19. Jones JW, Kayagaki N, Broz P, Henry T, Newton K, O’Rourke K, Chan S, Dong J, Qu Y, Roose-Girma M, Dixit VM, Monack DM (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci USA 107(21):9771–9776. doi:1003738107 [pii] 10.1073/pnas.1003738107

    Article  PubMed  CAS  Google Scholar 

  20. Kim S, Bauernfeind F, Ablasser A, Hartmann G, Fitzgerald KA, Latz E, Hornung V (2010) Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol 40(6):1545–1551. doi:10.1002/eji.201040425

    Article  PubMed  CAS  Google Scholar 

  21. Warren SE, Armstrong A, Hamilton MK, Mao DP, Leaf IA, Miao EA, Aderem A (2010) Cutting edge: cytosolic bacterial DNA activates the inflammasome via Aim2. J Immunol 185(2):818–821. doi:jimmunol.1000724 [pii] 10.4049/jimmunol.1000724

    Article  PubMed  CAS  Google Scholar 

  22. Wu J, Fernandes-Alnemri T, Alnemri ES (2010) Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol 30(5):693–702. doi:10.1007/s10875-010-9425-2

    Article  PubMed  CAS  Google Scholar 

  23. Tsuchiya K, Hara H, Kawamura I, Nomura T, Yamamoto T, Daim S, Dewamitta SR, Shen Y, Fang R, Mitsuyama M (2010) Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J Immunol 185(2):1186–1195. doi:jimmunol.1001058 [pii] 10.4049/jimmunol.1001058

    Article  PubMed  CAS  Google Scholar 

  24. Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA (2010) Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7(5):412–419. doi:S1931-3128(10)00110-1 [pii] 10.1016/j.chom.2010.04.004

    Article  PubMed  CAS  Google Scholar 

  25. Masumoto J, Taniguchi S, Ayukawa K, Sarvotham H, Kishino T, Niikawa N, Hidaka E, Katsuyama T, Higuchi T, Sagara J (1999) ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem 274(48):33835–33838

    Article  PubMed  CAS  Google Scholar 

  26. Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, Monack DM (2010) Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med 207(8):1745–1755. doi:jem.20100257 [pii] 10.1084/jem.20100257

    Article  PubMed  CAS  Google Scholar 

  27. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14(9):1590–1604. doi:4402194 [pii] 10.1038/sj.cdd.4402194

    Article  PubMed  CAS  Google Scholar 

  28. Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C (2009) Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol 182(5):3173–3182. doi:182/5/3173 [pii] 10.4049/jimmunol.0802367

    Article  PubMed  CAS  Google Scholar 

  29. Broz P, von Moltke J, Jones JW, Vance RE, Monack DM (2010) Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8(6):471–483. doi:S1931-3128(10)00380-X [pii] 10.1016/j.chom.2010.11.007

    Article  PubMed  CAS  Google Scholar 

  30. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11(12):1136–1142. doi:ni.1960 [pii] 10.1038/ni.1960

    Article  PubMed  CAS  Google Scholar 

  31. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117–121. doi:10.1038/nature10558 nature10558 [pii]

    Article  PubMed  CAS  Google Scholar 

  32. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack DM (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490(7419):288–291. doi:10.1038/nature11419 nature11419 [pii]

    Article  PubMed  CAS  Google Scholar 

  33. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150(3):606–619. doi:S0092-8674(12)00825-2 [pii] 10.1016/j.cell.2012.07.007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Maikke B. Ohlson and Jens Kortmann for critical reading of the manuscript. This work was supported by awards AI095396 and AI08972 from the National Institute of Allergy and Infectious Diseases to D.M., a Stanford Digestive Disease Center (DDC) pilot grant to P.B. and a long-term fellowship from the Human Frontiers in Science Program (HFSP) to P.B.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+business media, New York

About this protocol

Cite this protocol

Broz, P., Monack, D.M. (2013). Measuring Inflammasome Activation in Response to Bacterial Infection. In: De Nardo, C., Latz, E. (eds) The Inflammasome. Methods in Molecular Biology, vol 1040. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-523-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-523-1_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-522-4

  • Online ISBN: 978-1-62703-523-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics