Skip to main content

Identifying RNA Editing Sites in miRNAs by Deep Sequencing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1038))

Abstract

Deep sequencing has many possible applications; one of them is the identification and quantification of RNA editing sites. The most common type of RNA editing is adenosine to inosine (A-to-I) editing. A prerequisite for this editing process is a double-stranded RNA (dsRNA) structure. Such dsRNAs are formed as part of the microRNA (miRNA) maturation process, and it is therefore expected that miRNAs are affected by A-to-I editing. Indeed, tens of editing sites were found in miRNAs, some of which change the miRNA binding specificity. Here, we describe a protocol for the identification of RNA editing sites in mature miRNAs using deep sequencing data.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349

    Article  PubMed  CAS  Google Scholar 

  2. Yang W, Chendrimada TP, Wang Q et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  4. Kawahara Y, Zinshteyn B, Sethupathy P et al (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140

    Article  PubMed  CAS  Google Scholar 

  5. Burroughs AM, Ando Y, de Hoon MJL et al (2010) A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res 20:1398–1410

    Article  PubMed  CAS  Google Scholar 

  6. de Hoon MJL, Taft RJ, Hashimoto T et al (2010) Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Res 20:257–264

    Article  PubMed  Google Scholar 

  7. Alon S, Mor E, Vigneault F et al (2012) Systematic identification of edited microRNAs in the human brain. Genome Res 22:1533–1540

    Article  PubMed  CAS  Google Scholar 

  8. Li M, Wang IX, Li Y et al (2011) Widespread RNA and DNA sequence differences in the human transcriptome. Science 333:53–58

    Article  PubMed  CAS  Google Scholar 

  9. Lin W, Piskol R, Tan MH et al (2012) Comment on “widespread RNA and DNA sequence differences in the human transcriptome”. Science 335:1302

    Article  PubMed  CAS  Google Scholar 

  10. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  Google Scholar 

  11. Stocks MB, Moxon S, Mapleson D et al (2012) The UEA sRNA workbench: a suite of tools for analysing and visualising next generation sequencing microRNA and small RNA datasets. Bioinformatics 28:2059–2061

    Article  PubMed  CAS  Google Scholar 

  12. Zhu E, Zhao F, Xu G et al (2010) mirTools: microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids Res 38:W392–W397

    Article  PubMed  CAS  Google Scholar 

  13. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from the United States–Israel Binational Science Foundation (grant number 2009/290), Jerusalem, Israel, to EE. SA was supported by a Clore Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Alon, S., Eisenberg, E. (2013). Identifying RNA Editing Sites in miRNAs by Deep Sequencing. In: Shomron, N. (eds) Deep Sequencing Data Analysis. Methods in Molecular Biology, vol 1038. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-514-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-514-9_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-513-2

  • Online ISBN: 978-1-62703-514-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics