Skip to main content

Bio-hybrid Tissue Engineering for Cellular Cardiomyoplasty: Future Directions

  • Protocol
  • First Online:
Cellular Cardiomyoplasty

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1036))

Abstract

Cardiomyopathy induces geometric alteration of the ventricular cavity, which changes from a natural elliptical (conical) to a spherical shape. Ventricular chamber dilatation and spherical deformation are important causes of morbidity and mortality among patients with congestive heart failure. In addition, diastolic dysfunction is an important clinical problem in these cases because there is no medical or surgical specific treatment. Myocardial tissue engineering associating stem cells represent a new road and fresh hope for this heart failure population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chachques JC (2009) Cellular cardiac regenerative therapy in which patients? Expert Rev Cardiovasc Ther 7:911–919

    Article  PubMed  CAS  Google Scholar 

  2. Soler-Botija C, Bago JR, Bayes-Genis A (2012) A bird's-eye view of cell therapy and tissue engineering for cardiac regeneration. Ann N Y Acad Sci 1254:57–65

    Article  PubMed  CAS  Google Scholar 

  3. Herreros J, Trainini JC, Chachques JC (2011) Alternatives to heart transplantation: integration of biology with surgery. Front Biosci 3:635–647

    Article  Google Scholar 

  4. Dixon JA, Spinale FG (2011) Myocardial remodeling: cellular and extracellular events and targets. Annu Rev Physiol 73:47–68

    Article  PubMed  CAS  Google Scholar 

  5. Kao RL, Browder W, Li C (2009) Cellular cardiomyoplasty: what have we learned? Asian Cardiovasc Thorac Ann 17:89–101

    Article  PubMed  Google Scholar 

  6. Huang G, Pashmforoush M, Chung B et al (2011) The role of cardiac electrophysiology in myocardial regenerative stem cell therapy. J Cardiovasc Transl Res 4:61–65

    Article  PubMed  Google Scholar 

  7. Rasmussen JG, Frøbert O, Pilgaard L et al (2011) Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells. Cytotherapy 13:318–326

    Article  PubMed  CAS  Google Scholar 

  8. Hu X, Yu SP, Fraser JL et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808

    Article  PubMed  CAS  Google Scholar 

  9. Gavira JJ, Nasarre E, Abizanda G et al (2010) Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. Eur Heart J 31:1013–1021

    Article  PubMed  Google Scholar 

  10. Dai W, Hale SL, Kay GL et al (2009) Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology. Regen Med 4:387–395

    Article  PubMed  CAS  Google Scholar 

  11. Cortes-Morichetti M, Carpentier AF, Chachques JC et al (2007) Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. Tissue Eng 13:2681–2687

    Article  PubMed  CAS  Google Scholar 

  12. Chachques JC, Trainini JC, Carpentier A et al (2008) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 85:901–908

    Article  PubMed  Google Scholar 

  13. Mari-Buye N, Semino CE (2011) Differentiation of mouse embryonic stem cells in self-assembling peptide scaffolds. Methods Mol Biol 690:217–237

    Article  PubMed  CAS  Google Scholar 

  14. Arnal-Pastor M, Valles-Lluch A, Keicher M et al (2011) Coating typologies and constrained swelling of hyaluronic acid gels within scaffold pores. J Colloid Interface Sci 361:361–369

    Article  PubMed  CAS  Google Scholar 

  15. Chachques JC (2010) Development of bioartificial myocardium using stem cells and nanobiotechnology templates. Cardiol Res Pract 2010:806795

    Google Scholar 

  16. Chachques JC (2009) Cardiomyoplasty: is it still a viable option in patients with end-stage heart failure? Eur J Cardiothorac Surg 35:201–203

    Article  PubMed  Google Scholar 

  17. Lee LS, Ghanta RK, Mokashi SA et al (2010) Ventricular restraint therapy for heart failure: the right ventricle is different from the left ventricle. J Thorac Cardiovasc Surg 139:1012–1018

    Article  PubMed  Google Scholar 

  18. Olsson A, Bredin F, Franco-Cereceda A (2005) Echocardiographic findings using tissue velocity imaging following passive containment surgery with the Acorn CorCap cardiac support device. Eur J Cardiothorac Surg 28:448–453

    Article  PubMed  Google Scholar 

  19. Dixon JA, Goodman AM, Gaillard WF 2nd et al (2011) Hemodynamics and myocardial blood flow patterns after placement of a cardiac passive restraint device in a model of dilated cardiomyopathy. J Thorac Cardiovasc Surg 142:1038–1045

    Article  PubMed  Google Scholar 

  20. Lee LS, Ghanta RK, Mokashi SA et al (2012) J Thorac Cardiovasc Surg [Epub ahead of print]

    Google Scholar 

  21. Kwon MH, Cevasco M, Schmitto JD et al (2012) Ventricular restraint therapy for heart failure: a review, summary of state of the art, and future directions. J Thorac Cardiovasc Surg [Epub ahead of print]

  22. Haneef K, Lila N, Chachques JC et al (2012) Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells. Heart Int 7:e14

    PubMed  Google Scholar 

  23. Shafy A, Lavergne T, Chachques JC et al (2009) Association of electrostimulation with cell transplantation in ischemic heart disease. J Thorac Cardiovasc Surg 138:994–1001

    Article  PubMed  Google Scholar 

  24. Vilas Boas LG, Bestetti RB, Otaviano AP et al (2012) Outcome of Chagas cardiomyopathy in comparison to ischemic cardiomyopathy. Int J Cardiol [Epub ahead of print]

  25. Andrade JP, Marin Neto JA, Paola AA et al (2011) I Latin American guidelines for the diagnosis and treatment of Chagas’ heart disease: executive summary. Arq Bras Cardiol 96:434–442

    Article  PubMed  Google Scholar 

  26. Vilas-Boas F, Feitosa GS, Soares MB et al (2011) Bone marrow cell transplantation in Chagas’ disease heart failure: report of the first human experience. Arq Bras Cardiol 96:325–331

    Article  PubMed  Google Scholar 

  27. Al Kindi AH, Chiu RC, Shum-Tim D et al (2011) Microencapsulation to reduce mechanical loss of microspheres: implications in myocardial cell therapy. Eur J Cardiothorac Surg 39:241–247

    Article  PubMed  Google Scholar 

  28. Giraud MN, Guex AG, Tevaearai HT (2012) Cell therapies for heart function recovery: focus on myocardial tissue engineering and nanotechnologies. Cardiol Res Pract 2012:971614

    PubMed  Google Scholar 

  29. Sekine H, Shimizu T, Okano T (2012) Myocardial tissue engineering: toward a bioartificial pump. Cell Tissue Res 347:775–782

    Article  PubMed  Google Scholar 

  30. Habib M, Shapira-Schweitzer K, Caspi O et al (2011) A combined cell therapy and in-situ tissue-engineering approach for myocardial repair. Biomaterials 32:7514–7523

    Article  PubMed  CAS  Google Scholar 

  31. Torrent-Guasp F, Kocica MJ, Corno AF et al (2005) Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg 27:191–201

    Article  PubMed  Google Scholar 

  32. Shafy A, Fink T, Chachques JC et al (2012) Development of cardiac support bioprostheses for ventricular restoration and myocardial regeneration. Eur J Cardiothorac Surg [Epub ahead of print]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chachques, J.C. (2013). Bio-hybrid Tissue Engineering for Cellular Cardiomyoplasty: Future Directions. In: Kao, R. (eds) Cellular Cardiomyoplasty. Methods in Molecular Biology, vol 1036. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-511-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-511-8_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-510-1

  • Online ISBN: 978-1-62703-511-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics