Skip to main content

Angiogenic Nanodelivery Systems for Myocardial Therapy

  • Protocol
  • First Online:
Book cover Cellular Cardiomyoplasty

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1036))

  • 2908 Accesses

Abstract

Despite outstanding progress in the area of cardiovascular diseases, significant challenges remain in designing efficient delivery systems for myocardial therapy. Nanotechnology provides the tools to explore such frontiers of biomedical science at cellular level and thus offers unique features for potential application in the field of cardiac therapy. This chapter focuses on the methodology, based on the work done in our lab, to prepare and investigate two kinds of biocompatible nanoparticles (NPs) that can be useful for sustained delivery of single or multiple angiogenic growth factors to damaged sites, such as in myocardially infarcted heart to promote myocardial angiogenesis and reduce scar area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Heart disease and stroke statistics-2010 update a report from the American Heart Association. Circulation 121:E46–E215

    Article  PubMed  Google Scholar 

  2. Reynolds HR, Srichai MB, Iqbal SN et al (2011) Mechanisms of myocardial infarction in women without angiographically obstructive coronary artery disease. Circulation 124:1414–1425

    Article  PubMed  Google Scholar 

  3. Paul A, Ge Y, Prakash S et al (2009) Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy. Regen Med 4:733–745

    Article  PubMed  Google Scholar 

  4. Yoon YS, Johnson IA, Park JS et al (2004) Therapeutic myocardial angiogenesis with vascular endothelial growth factors. Mol Cell Biochem 264:63–74

    Article  PubMed  CAS  Google Scholar 

  5. Khan AA, Paul A, Abbasi S et al (2011) Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells. Int J Nanomedicine 6:1069–1081

    PubMed  CAS  Google Scholar 

  6. Ko YT, Hartner WC, Kale A et al (2009) Gene delivery into ischemic myocardium by double-targeted lipoplexes with anti-myosin antibody and TAT peptide. Gene Ther 16:52–59

    Article  PubMed  CAS  Google Scholar 

  7. Paul A, Binsalamah ZM, Khan AA et al (2011) A nanobiohybrid complex of recombinant baculovirus and Tat/DNA nanoparticles for delivery of Ang-1 transgene in myocardial infarction therapy. Biomaterials 32:8304–8318

    Article  PubMed  CAS  Google Scholar 

  8. Shim WSN, Li W, Zhang L et al (2006) Angiopoietin-1 promotes functional neovascularization that relieves ischemia by improving regional reperfusion in a swine chronic myocardial ischemia model. J Biomed Sci 13:579–591

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi K, Ito Y, Morikawa M et al (2003) Adenoviral-delivered angiopoietin-1 reduces the infarction and attenuates the progression of cardiac dysfunction in the rat model of acute myocardial infarction. Mol Ther 8:584–592

    Article  PubMed  CAS  Google Scholar 

  10. Kajstura J, Rota M, Whang B et al (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96:127–137

    Article  PubMed  CAS  Google Scholar 

  11. Galagudza M, Korolev D, Postnov V et al (2012) Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles. Int J Nanomedicine 7:1671–1678

    Article  PubMed  CAS  Google Scholar 

  12. Riehemann K, Schneider SW, Luger TA et al (2009) Nanomedicine-challenge and perspectives. Angew Chem Int Ed 48:872–897

    Article  CAS  Google Scholar 

  13. Paulis LE, Geelen T, Kuhlmann MT et al (2012) Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. J Control Release 162:276–285

    Article  PubMed  CAS  Google Scholar 

  14. Binsalamah ZM, Paul A, Prakash S et al (2012) Nanomedicine in cardiovascular therapy: recent advancements. Expert Rev Cardiovasc Ther 10:805–815

    Article  PubMed  CAS  Google Scholar 

  15. Paul A, Shao W, Shum-Tim D et al (2012) The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNA(Ang1 + Vegf) nanoparticles. Biomaterials 33:7655–7664

    Article  PubMed  CAS  Google Scholar 

  16. Binsalamah ZM, Paul A, Khan AA et al (2011) Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model. Int J Nanomedicine 6:2667–2678

    PubMed  CAS  Google Scholar 

  17. Gibaud S, Rousseau C, Weingarten C et al (1998) Polyalkylcyanoacrylate nanoparticles as carriers for granulocyte-colony stimulating factor (G-CSF). J Control Release 52:131–139

    Article  PubMed  CAS  Google Scholar 

  18. Fattal E, Vauthier C, Aynie I et al (1998) Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release 53:137–143

    Article  PubMed  CAS  Google Scholar 

  19. Amidi M, Romeijn SG, Borchard G et al (2006) Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 111:107–116

    Article  PubMed  CAS  Google Scholar 

  20. Segers VFM, Tokunou T, Higgins LJ et al (2007) Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116:1683–1692

    Article  PubMed  CAS  Google Scholar 

  21. Jaracz S, Chen J, Kuznetsova LV et al (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 13:5043–5054

    Article  PubMed  CAS  Google Scholar 

  22. Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61:2549–2559

    Article  PubMed  CAS  Google Scholar 

  23. Gupta B, Levchenko TS, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57:637–651

    Article  PubMed  CAS  Google Scholar 

  24. Lochmann D, Jauk E, Zimmer A (2004) Drug delivery of oligonucleotides by peptides. Eur J Pharm Biopharm 58:237–251

    Article  PubMed  CAS  Google Scholar 

  25. Rejman J, Oberle V, Zuhorn IS et al (2004) Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J 377:159–169, p 14

    Article  PubMed  CAS  Google Scholar 

  26. Decuzzi P, Godin B, Tanaka T et al (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320–327

    Article  PubMed  CAS  Google Scholar 

  27. Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157:168–182

    Article  PubMed  CAS  Google Scholar 

  28. Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183

    Article  PubMed  CAS  Google Scholar 

  29. Abbasi S, Paul A, Shao W et al (2012) Cationic albumin nanoparticles for enhanced drug delivery to treat breast cancer: preparation and in vitro assessment. J Drug Deliv 2012:686108

    Article  PubMed  Google Scholar 

  30. Yang L, Cui F, Cun DM et al (2007) Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. Int J Pharm 340:163–172

    Article  PubMed  CAS  Google Scholar 

  31. Conlin AK, Seidman AD, Bach A et al (2010) Phase II trial of weekly nanoparticle albumin-bound paclitaxel with carboplatin and trastuzumab as first-line therapy for women with HER2-overexpressing metastatic breast cancer. Clin Breast Cancer 10:281–287

    Article  PubMed  CAS  Google Scholar 

  32. Cortes J, Saura C (2010) Nanoparticle albumin-bound (nab (TM))-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. EJC Suppl 8:1–10

    CAS  Google Scholar 

  33. Lee SH, Heng D, Ng WK et al (2011) Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 403:192–200

    Article  PubMed  CAS  Google Scholar 

  34. Motwani SK, Chopra S, Talegaonkar S et al (2008) Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 68:513–525

    PubMed  CAS  Google Scholar 

  35. Rajaonarivony M, Vauthier C, Couarraze G et al (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82:912–917

    Article  PubMed  CAS  Google Scholar 

  36. Paul A, Shum-Tim D, Prakash S (2010) Investigation on PEG integrated alginate-chitosan microcapsules for myocardial therapy using marrow stem cells genetically modified by recombinant baculovirus. Cardiovasc Eng Technol 1:154–164

    Article  Google Scholar 

  37. Paul A, Shao W, Abbasi S et al (2012) PAMAM dendrimer–baculovirus nanocomplex for microencapsulated adipose stem cell-gene therapy: in vitro and in vivo functional assessment. Mol Pharm 9:2479–2488, p 15

    Article  PubMed  CAS  Google Scholar 

  38. Paul A, Nayan M, Khan AA et al (2012) Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction. Int J Nanomedicine 7:663–682

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by research grant from Canadian Institutes of Health Research and Natural Sciences and Engineering Research Council, Canada. A. Paul acknowledges postdoctoral award from Fonds Québécois de la Recherche sur la Nature et les Technologies (FRSQ, Canada).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Paul, A., Shum-Tim, D., Prakash, S. (2013). Angiogenic Nanodelivery Systems for Myocardial Therapy. In: Kao, R. (eds) Cellular Cardiomyoplasty. Methods in Molecular Biology, vol 1036. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-511-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-511-8_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-510-1

  • Online ISBN: 978-1-62703-511-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics