Skip to main content

Detection In Vitro and Quantitative Estimation of Artificial Microterritories Which Promote Osteogenic Differentiation and Maturation of Stromal Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1035))

Abstract

Extracellular matrix can regulate multipotent mesenchymal stromal cells (MMSC) differentiation, with potential applications for tissue engineering. A relief of mineralized bone takes essential effect on MMSC fate. Nevertheless, delicate structure and a hierarchy of niches for stromal stem cells and its quantitative parameters are not practically known. Here, we describe the protocol to define the basic approach providing a guiding for in vitro identification of quantitative features of artificial calcium phosphate niches which promotes osteogenic differentiation and maturation of stromal stem cell.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    PubMed  CAS  Google Scholar 

  2. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  PubMed  CAS  Google Scholar 

  3. Dellatore SM, Garsia AS, Miller WM (2008) Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol 19:534–540

    Article  PubMed  CAS  Google Scholar 

  4. Calvi LM, Adams GB, Weibrect KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  PubMed  CAS  Google Scholar 

  5. Yin T, Li L (2006) The stem cell niches in bone. JCI 116:1195–1201

    Article  PubMed  CAS  Google Scholar 

  6. Jing D, Fonseca A-V, Alakel N et al (2010) Hematopoietic stem cells in co-culture with mesenchymal stromal cells—modeling the niche compartments in vitro. Haematologica 95:542–550

    Article  PubMed  CAS  Google Scholar 

  7. Curtis AS, Varde M (1964) Control of cell behavior: topological factors. J Natl Cancer Inst 33:15–26

    PubMed  CAS  Google Scholar 

  8. Datta N, Holtorf HL, Sikavitsas VI et al (2005) Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 26:971–977

    Article  PubMed  CAS  Google Scholar 

  9. Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204–219

    Article  PubMed  Google Scholar 

  10. Sniadecki NJ, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell-substrate interactions. Ann Biomed Eng 34:59–74

    Article  PubMed  Google Scholar 

  11. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441

    Article  PubMed  CAS  Google Scholar 

  12. Lutolf MP, Doyonnas R, Havenstrite K et al (2009) Perturbation of single hematopoietic stem cell fates in artificial niches. Integr Biol (Camb) 1:59–69

    Article  CAS  Google Scholar 

  13. Khlusov IA, Karlov AV, Sharkeev Yu P et al (2005) Osteogenic potential of mesenchymal stem cells from bone marrow in situ: role of physicochemical properties of artificial surfaces. Bull Exp Biol Med 140:144–152

    Article  PubMed  CAS  Google Scholar 

  14. Khlusov IA, Khlusova M Yu, Zaitsev KV et al (2011) Pilot in vitro study of the parameters of artificial niche for osteogenic differentiation of human stromal stem cell pool. Bull Exp Biol Med 150:535–542

    Google Scholar 

  15. Burtis CA, Ashwood ER (eds) (2001) Tietz fundamentals of clinical chemistry, 5th edn. W.B. Saunders Company, Philadelphia

    Google Scholar 

  16. Sharkeev Yu P, Legostaeva EV, Eroshenko A Yu et al (2009) The structure and physical and mechanical properties of a novel biocomposite material, nanostructured titanium-calcium-phosphate coating. Compos Interfac 16:535–546

    Google Scholar 

  17. Aerts F, Wagemaker G (2006) Mesenchymal stem cell engineering and transplantation. In: Nolta JA (ed) Genetic engineering of mesenchymal stem cells. Springer, Dordrecht, pp 1–44

    Chapter  Google Scholar 

  18. Lama VN, Smith L, Badri L et al (2007) Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. JCI 117:989–996

    Article  PubMed  CAS  Google Scholar 

  19. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. JCS 119:2204–2213

    Google Scholar 

  20. de Bruijn JD, van den Brink I, Mendes S et al (1999) Bone induction by implants coated with cultured osteogenic bone marrow cells. Adv Dent Res 13:74–81

    Article  PubMed  Google Scholar 

  21. Riggs BL, Melton LJ III (1996) Osteoporosis. Etiology, diagnosis, and management, 2nd edn. Lippincott-Raven, Philadelphia, New York

    Google Scholar 

  22. Scadden DT (2007) The stem cell niche in health and leukemic disease. Best Pract Res Clin Haematol 20:19–27

    Article  PubMed  CAS  Google Scholar 

  23. Khlusov IA, Dekhtyar Yu, Khlusova M Yu et al (2013) Novel concepts of “Niche-Relief” and “Niche-Voltage” for stem cells as a base of bone and hematopoietic tissues biomimetic engineering. IFMBE Proc 38:99–102. doi:10.1007/978-3-642-34197-7_26

Download references

Acknowledgments

The authors are deeply indebted to: professor Yu.P. Sharkeev and E.V. Legostaeva Ph.D. (Institute of Strength Physics and Materials Science, SB of RAS, Tomsk, Russia) for designing and digital imaging of titanium specimens with calcium phosphate coating; K.V. Zaitsev Ph.D. (Stem Cells Bank Ltd., Tomsk, Russia) for cell culture provision; Joint Use Center for Materials Science (Tomsk State University, Tomsk, Russia) for microscopic equipment use.

This work was supported by the Federal Goal Program of Russian Federation (grant No 8036).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Khlusov, I.A., Shevtsova, N.M., Khlusova, M.Y. (2013). Detection In Vitro and Quantitative Estimation of Artificial Microterritories Which Promote Osteogenic Differentiation and Maturation of Stromal Stem Cells. In: Turksen, K. (eds) Stem Cell Niche. Methods in Molecular Biology, vol 1035. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-508-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-508-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-507-1

  • Online ISBN: 978-1-62703-508-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics