Skip to main content

In Vitro Construction of 2D and 3D Simulations of the Murine Hematopoietic Niche

  • Protocol
  • First Online:
Stem Cell Niche

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1035))

Abstract

Hematopoietic stem cells (HSC) undergo multilineage differentiation or self-renewal to maintain normal hematopoiesis and to sustain the size of the HSC pool throughout life. These processes are determined by a complex interplay of molecular signals between HSC and other cellular components such as osteoblasts (OB), stromal cells, endothelial cells, and a number of extracellular matrix (ECM) proteins. Through changes in its physical properties within the bone marrow (BM) microenvironment, collagen, which is one of the most critical ECM proteins, can modulate HSC function and maintenance of the competence of the hematopoietic niche (HN). At present, there is no consensus as to how different cellular elements of the niche collaborate and interact to promote HSC self-renewal or differentiation to maintain hematopoiesis. Deciphering these interactions and the impact of mechanical properties of the collagen microstructures within the HN has critical clinical implications in the areas of stem cell homing, engraftment, and maintenance of HSC function. In this chapter, we describe several of the in vitro methodologies for establishing and maintaining HSC in vitro including the isolation of OB, stromal cells, and hematopoietic progenitor cells, as well as the establishment of both two-dimensional (2D) and three-dimensional (3D) coculture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  PubMed  CAS  Google Scholar 

  2. Abramson S, Miller RG, Phillips RA (1977) The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med 145:1567–1579

    Article  PubMed  CAS  Google Scholar 

  3. Snodgrass R, Keller G (1987) Clonal fluctuation within the haematopoietic system of mice reconstituted with retrovirus-infected stem cells. EMBO J 6:3955–3960

    PubMed  CAS  Google Scholar 

  4. Van Zant G, Scott-Micus K, Thompson BP, Fleischman RA, Perkins S (1992) Stem cell quiescence/activation is reversible by serial transplantation and is independent of stromal cell genotype in mouse aggregation chimeras. Exp Hematol 20:470–475

    PubMed  Google Scholar 

  5. Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81(11):2844–2853

    PubMed  CAS  Google Scholar 

  6. Till JE, McCulloch EA (1980) Hemopoietic stem cell differentiation. Biochem Biophys Acta 605:431–443

    PubMed  CAS  Google Scholar 

  7. Jones RJ, Celano P, Sharkis SJ, Sensenbrenner LL (1989) Two phases of engraftment established by serial bone marrow transplantation in mice. Blood 73(2):397–401

    PubMed  CAS  Google Scholar 

  8. Schofield R (1978) The relationship between the spleen colony-forming cell and the hematopoietic stem cell. Blood Cells 4(1–2):7–25

    PubMed  CAS  Google Scholar 

  9. Kopp H-G, Avecilla ST, Hooper AT, Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20(5):349–356

    Article  CAS  Google Scholar 

  10. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    Article  PubMed  CAS  Google Scholar 

  11. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161

    Article  PubMed  CAS  Google Scholar 

  12. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    Article  PubMed  CAS  Google Scholar 

  13. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637

    Article  PubMed  CAS  Google Scholar 

  14. Wilson A, Oser GM, Jaworski M, Blanco-Bose WE, Laurenti E, Adolphe C, Marieke A, Essers H, Macdonald O, Trumpp A (2007) Dormant and self-renewing hematopoietic stem cells and their niches. Ann N Y Acad Sci 1106:64–75

    Article  PubMed  CAS  Google Scholar 

  15. Weiss L, Sakai H (1984) The hematopoietic stroma. Am J Anat 170(3):447–463

    Article  PubMed  CAS  Google Scholar 

  16. Ho AD (2005) Kinetics and symmetry of divisions of hematopoietic stem cells. Exp Hematol 33(1):1–8

    Article  PubMed  CAS  Google Scholar 

  17. Sagar BM, Rentala S, Gopal PN, Sharma S, Mukhopadhyay A (2006) Fibronectin and laminin enhance engraftibility of cultured hematopoietic stem cells. Biochem Biophys Res Commun 350(4):1000–1005

    Article  PubMed  CAS  Google Scholar 

  18. Campbell A, Wicha MS, Long M (1985) Extracellular matrix promotes the growth and differentiation of murine hematopoietic cells in vitro. J Clin Invest 75(6):2085–2090

    Article  PubMed  CAS  Google Scholar 

  19. Bailey JL, Critser PJ, Whittington C, Kuske JL, Yoder MC, Voytik-Harbin SL (2011) Collagen oligomers modulate physical and biological properties of three-dimensional self-assembled matrices. Biopolymers 95(2):77–93

    Article  PubMed  CAS  Google Scholar 

  20. Kreger ST, Bell BJ, Bailey J, Stites E, Kuske J, Waisner B, Voytik-Harbin SL (2010) Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolymers 93(8):690–707

    PubMed  CAS  Google Scholar 

  21. Brightman AO, Rajwa BP, Sturgis JE, McCallister ME, Robinson JP, Voytik-Harbin SL (2000) Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54:222–234

    Article  PubMed  CAS  Google Scholar 

  22. Horowitz MC, Fields A, DeMeo D, Qian HY, Bothwell AL, Trepman E (1994) Expression and regulation of Ly-6 differentiation antigens by murine osteoblasts. Endocrinology 135(3):1032–1043

    Article  PubMed  CAS  Google Scholar 

  23. Chitteti BR, Cheng YH, Kacena MA, Srour EF (2013) The hierarchical organization of osteoblasts reveals the significant role of CD166 in hematopoietic stem cell maintenance and function. Bone 54(1):58–67

    Article  PubMed  CAS  Google Scholar 

  24. Chitteti BR, Cheng YH, Poteat B, Rodriguez-Rodriguez S, Goebel WS, Carlesso N, Kacena MA, Srour EF (2010) Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 115(16):3239–3248

    Article  PubMed  CAS  Google Scholar 

  25. Cheng YH, Chitteti BR, Streicher DA, Morgan JA, Rodriguez-Rodriguez S, Carlesso N, Srour EF, Kacena MA (2011) Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res 26(5):1111–1121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the operators of the Indiana University Melvin and Bren Simon Cancer Center Flow Cytometry Resource Facility for their outstanding technical help and support. This work was supported in part by grant NHLBI HL55716 (E.F.S.). Indiana University is an NIDDK designated Center of Excellence in Molecular Hematology (NIDDK P01 DK090948). M.B. is supported by an NHLBI training grant (T32 HL007910-13). The Flow Cytometry Research Facility is partially funded by NCI P30 CA082709.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chitteti, B.R., Bethel, M., Voytik-Harbin, S.L., Kacena, M.A., Srour, E.F. (2013). In Vitro Construction of 2D and 3D Simulations of the Murine Hematopoietic Niche. In: Turksen, K. (eds) Stem Cell Niche. Methods in Molecular Biology, vol 1035. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-508-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-508-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-507-1

  • Online ISBN: 978-1-62703-508-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics