Skip to main content

Targeting Wnt Signaling to Improve Wound Healing After Myocardial Infarction

  • Protocol
  • First Online:
Book cover Wound Regeneration and Repair

Abstract

Myocardial infarction is one of the major causes of left ventricular dilatation, frequently leading to heart failure. In the last decade, the wound healing process that takes place in the infarct area after infarction has been recognized as a novel therapeutic target to attenuate left ventricular dilatation and preserve an adequate cardiac function. In this chapter, we discuss the role of Wnt signaling in the wound healing process after infarction, with a specific focus on its modulating effect on myofibroblast characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleutjens JP, Blankesteijn WM, Daemen MJ, Smits JF (1999) The infarcted myocardium: simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc Res 44:232–241

    CAS  PubMed  Google Scholar 

  2. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30–37

    PubMed  Google Scholar 

  3. McMurray JJ, Pfeffer MA (2005) Heart failure. Lancet 365:1877–1889

    PubMed  Google Scholar 

  4. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278

    CAS  PubMed  Google Scholar 

  5. Baudino TA, Carver W, Giles W, Borg TK (2006) Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 291:H1015–H1026

    CAS  PubMed  Google Scholar 

  6. WHO (2011) WHO Fact Sheet No.317 - Cardiovascular diseases (CVDs)

    Google Scholar 

  7. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J (2011) Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123:e18–e209

    PubMed  Google Scholar 

  8. White HD, Chew DP (2008) Acute myocardial infarction. Lancet 372:570–584

    CAS  PubMed  Google Scholar 

  9. Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8:30–41

    PubMed Central  PubMed  Google Scholar 

  10. Wexler DJ, Chen J, Smith GL, Radford MJ, Yaari S, Bradford WD, Krumholz HM (2001) Predictors of costs of caring for elderly patients discharged with heart failure. Am Heart J 142:350–357

    CAS  PubMed  Google Scholar 

  11. NICE (2010) Chronic Heart Failure, National clinical guideline for diagnosis and management in primary and secondary care (National Institute for Health and Clinical Excellence Clinical Guideline No 108)

    Google Scholar 

  12. Soonpaa MH, Daud AI, Koh GY, Klug MG, Kim KK, Wang H, Field LJ (1995) Potential approaches for myocardial regeneration. Ann N Y Acad Sci 752:446–454

    CAS  PubMed  Google Scholar 

  13. Buja LM, Vela D (2008) Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol 17:349–374

    PubMed  Google Scholar 

  14. Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG (2004) Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164:665–677

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Dobaczewski M, Bujak M, Zymek P, Ren G, Entman ML, Frangogiannis NG (2006) Extracellular matrix remodeling in canine and mouse myocardial infarcts. Cell Tissue Res 324:475–488

    CAS  PubMed  Google Scholar 

  16. Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    CAS  PubMed  Google Scholar 

  17. Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105:1164–1176

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Tyagi SC, Campbell SE, Reddy HK, Tjahja E, Voelker DJ (1996) Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Mol Cell Biochem 155:13–21

    CAS  PubMed  Google Scholar 

  19. van der Laan AM, Piek JJ, van Royen N (2009) Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol 6:515–523

    PubMed  Google Scholar 

  20. Willems IE, Havenith MG, De Mey JG, Daemen MJ (1994) The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145:868–875

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81:474–481

    CAS  PubMed Central  PubMed  Google Scholar 

  22. van den Borne SW, van de Schans VA, Strzelecka AE, Vervoort-Peters HT, Lijnen PM, Cleutjens JP, Smits JF, Daemen MJ, Janssen BJ, Blankesteijn WM (2009) Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc Res 84:273–282

    PubMed  Google Scholar 

  23. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE (2011) Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 4:98–108

    PubMed  Google Scholar 

  24. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P (1994) Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89:151–163

    CAS  PubMed  Google Scholar 

  25. Olivetti G, Melissari M, Balbi T, Quaini F, Sonnenblick EH, Anversa P (1994) Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in humans. J Am Coll Cardiol 24:140–149

    CAS  PubMed  Google Scholar 

  26. Frangogiannis NG (2006) Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem 13:1877–1893

    CAS  PubMed  Google Scholar 

  27. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40–51

    CAS  PubMed  Google Scholar 

  28. Fries KM, Blieden T, Looney RJ, Sempowski GD, Silvera MR, Willis RA, Phipps RP (1994) Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin Immunol Immunopathol 72:283–292

    CAS  PubMed  Google Scholar 

  29. Sorrell JM, Caplan AI (2004) Fibroblast heterogeneity: more than skin deep. J Cell Sci 117:667–675

    CAS  PubMed  Google Scholar 

  30. Sun Y, Weber KT (1996) Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28:851–858

    CAS  PubMed  Google Scholar 

  31. Potts JD, Runyan RB (1989) Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor beta. Dev Biol 134:392–401

    CAS  PubMed  Google Scholar 

  32. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961

    CAS  PubMed  Google Scholar 

  33. Strieter RM, Keeley EC, Burdick MD, Mehrad B (2009) The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis. Trans Am Clin Climatol Assoc 120:49–59

    PubMed Central  PubMed  Google Scholar 

  34. Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969

    CAS  PubMed  Google Scholar 

  35. Baum J, Duffy HS (2011) Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol 57:376–379

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Meran S, Steadman R (2011) Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 92:158–167

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12:2730–2741

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    CAS  PubMed  Google Scholar 

  39. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434

    CAS  PubMed  Google Scholar 

  40. Holmes JW, Borg TK, Covell JW (2005) Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng 7:223–253

    CAS  PubMed  Google Scholar 

  41. Fomovsky GM, Thomopoulos S, Holmes JW (2010) Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol 48:490–496

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Matsui Y, Morimoto J, Uede T (2010) Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction. World J Biol Chem 1:69–80

    PubMed Central  PubMed  Google Scholar 

  43. Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127:526–537

    CAS  PubMed  Google Scholar 

  44. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51:600–606

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Sun Y (2010) Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. J Mol Cell Cardiol 48:483–489

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Lijnen PJ, Petrov VV, Fagard RH (2001) Angiotensin II-induced stimulation of collagen secretion and production in cardiac fibroblasts is mediated via angiotensin II subtype 1 receptors. J Renin Angiotensin Aldosterone Syst 2:117–122

    CAS  PubMed  Google Scholar 

  48. Yu CM, Tipoe GL, Wing-Hon Lai K, Lau CP (2001) Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol 38:1207–1215

    CAS  PubMed  Google Scholar 

  49. Lin CS, Pan CH, Wen CH, Yang TH, Kuan TC (2010) Regulation of angiotensin converting enzyme II by angiotensin peptides in human cardiofibroblasts. Peptides 31:1334–1340

    CAS  PubMed  Google Scholar 

  50. Kassiri Z, Zhong J, Guo D, Basu R, Wang X, Liu PP, Scholey JW, Penninger JM, Oudit GY (2009) Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail 2:446–455

    CAS  PubMed  Google Scholar 

  51. Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86:1259–1265

    CAS  PubMed  Google Scholar 

  52. Porter KE, Turner NA, O'Regan DJ, Ball SG (2004) Tumor necrosis factor alpha induces human atrial myofibroblast proliferation, invasion and MMP-9 secretion: inhibition by simvastatin. Cardiovasc Res 64:507–515

    CAS  PubMed  Google Scholar 

  53. Banerjee I, Fuseler JW, Intwala AR, Baudino TA (2009) IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol 296:H1694–H1704

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Dixon IM (2010) The soluble interleukin 6 receptor takes its place in the pantheon of interleukin 6 signaling proteins: phenoconversion of cardiac fibroblasts to myofibroblasts. Hypertension 56:193–195

    CAS  PubMed  Google Scholar 

  55. Palmer JN, Hartogensis WE, Patten M, Fortuin FD, Long CS (1995) Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest 95:2555–2564

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Turner NA, Warburton P, O'Regan DJ, Ball SG, Porter KE (2010) Modulatory effect of interleukin-1alpha on expression of structural matrix proteins, MMPs and TIMPs in human cardiac myofibroblasts: role of p38 MAP kinase. Matrix Biol 29:613–620

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Cortez DM, Feldman MD, Mummidi S, Valente AJ, Steffensen B, Vincenti M, Barnes JL, Chandrasekar B (2007) IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK- and ERK1/2-dependent C/EBP-beta, NF-kappaB, and AP-1 activation. Am J Physiol Heart Circ Physiol 293:H3356–H3365

    CAS  PubMed  Google Scholar 

  58. Fix C, Bingham K, Carver W (2011) Effects of interleukin-18 on cardiac fibroblast function and gene expression. Cytokine 53:19–28

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Singh M, Foster CR, Dalal S, Singh K (2010) Osteopontin: role in extracellular matrix deposition and myocardial remodeling post-MI. J Mol Cell Cardiol 48:538–543

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Lenga Y, Koh A, Perera AS, McCulloch CA, Sodek J, Zohar R (2008) Osteopontin expression is required for myofibroblast differentiation. Circ Res 102:319–327

    CAS  PubMed  Google Scholar 

  61. Trueblood NA, Xie Z, Communal C, Sam F, Ngoy S, Liaw L, Jenkins AW, Wang J, Sawyer DB, Bing OH, Apstein CS, Colucci WS, Singh K (2001) Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88:1080–1087

    CAS  PubMed  Google Scholar 

  62. Manabe R, Ohe N, Maeda T, Fukuda T, Sekiguchi K (1997) Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. J Cell Biol 139:295–307

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239:1573–1584

    CAS  PubMed  Google Scholar 

  65. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45

    CAS  PubMed  Google Scholar 

  66. Waldenstrom A, Martinussen HJ, Gerdin B, Hallgren R (1991) Accumulation of hyaluronan and tissue edema in experimental myocardial infarction. J Clin Invest 88:1622–1628

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Huebener P, Abou-Khamis T, Zymek P, Bujak M, Ying X, Chatila K, Haudek S, Thakker G, Frangogiannis NG (2008) CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol 180:2625–2633

    CAS  PubMed  Google Scholar 

  68. Webber J, Jenkins RH, Meran S, Phillips A, Steadman R (2009) Modulation of TGFbeta1-dependent myofibroblast differentiation by hyaluronan. Am J Pathol 175:148–160

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95:568–578

    CAS  PubMed  Google Scholar 

  70. Chintalgattu V, Harris GS, Akula SM, Katwa LC (2007) PPAR-gamma agonists induce the expression of VEGF and its receptors in cultured cardiac myofibroblasts. Cardiovasc Res 74:140–150

    CAS  PubMed  Google Scholar 

  71. Fliegner D, Westermann D, Riad A, Schubert C, Becher E, Fielitz J, Tschope C, Regitz-Zagrosek V (2008) Up-regulation of PPARgamma in myocardial infarction. Eur J Heart Fail 10:30–38

    CAS  PubMed  Google Scholar 

  72. Husse B, Briest W, Homagk L, Isenberg G, Gekle M (2007) Cyclical mechanical stretch modulates expression of collagen I and collagen III by PKC and tyrosine kinase in cardiac fibroblasts. Am J Physiol Regul Integr Comp Physiol 293:R1898–R1907

    CAS  PubMed  Google Scholar 

  73. van den Borne SW, Narula J, Voncken JW, Lijnen PM, Vervoort-Peters HT, Dahlmans VE, Smits JF, Daemen MJ, Blankesteijn WM (2008) Defective intercellular adhesion complex in myocardium predisposes to infarct rupture in humans. J Am Coll Cardiol 51:2184–2192

    PubMed  Google Scholar 

  74. Zhang Y, Kanter EM, Laing JG, Aprhys C, Johns DC, Kardami E, Yamada KA (2008) Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts. Cell Commun Adhes 15:289–303

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Pellman J, Lyon RC, Sheikh F (2010) Extracellular matrix remodeling in atrial fibrosis: mechanisms and implications in atrial fibrillation. J Mol Cell Cardiol 48:461–467

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Leon DA (2011) Trends in European life expectancy: a salutary view. Int J Epidemiol 40:271–277

    PubMed  Google Scholar 

  77. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    CAS  PubMed  Google Scholar 

  78. Krum H, Teerlink JR (2011) Medical therapy for chronic heart failure. Lancet 378:713–721

    CAS  PubMed  Google Scholar 

  79. Minicucci MF, Azevedo PS, Polegato BF, Paiva SA, Zornoff LA (2011) Heart failure after myocardial infarction: clinical implications and treatment. Clin Cardiol 34:410–414

    PubMed  Google Scholar 

  80. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW (2009) 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the diagnosis and management of heart failure in adults. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. J Am Coll Cardiol 53:e1–e90

    PubMed  Google Scholar 

  81. Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ (1995) Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 147:325–338

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN, Drexler H (1994) Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273–2282

    CAS  PubMed  Google Scholar 

  83. Taylor K, Patten RD, Smith JJ, Aronovitz MJ, Wight J, Salomon RN, Konstam MA (1998) Divergent effects of angiotensin-converting enzyme inhibition and angiotensin II-receptor antagonism on myocardial cellular proliferation and collagen deposition after myocardial infarction in rats. J Cardiovasc Pharmacol 31:654–660

    CAS  PubMed  Google Scholar 

  84. van den Borne SW, Isobe S, Verjans JW, Petrov A, Lovhaug D, Li P, Zandbergen HR, Ni Y, Frederik P, Zhou J, Arbo B, Rogstad A, Cuthbertson A, Chettibi S, Reutelingsperger C, Blankesteijn WM, Smits JF, Daemen MJ, Zannad F, Vannan MA, Narula N, Pitt B, Hofstra L, Narula J (2008) Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol 52:2017–2028

    PubMed  Google Scholar 

  85. Jugdutt BI (2008) Pleiotropic effects of cardiac drugs on healing post-MI. The good, bad, and ugly. Heart Fail Rev 13:439–452

    PubMed  Google Scholar 

  86. Kober L, Torp-Pedersen C, Carlsen JE, Bagger H, Eliasen P, Lyngborg K, Videbaek J, Cole DS, Auclert L, Pauly NC (1995) A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med 333:1670–1676

    CAS  PubMed  Google Scholar 

  87. McKelvie RS, Yusuf S, Pericak D, Avezum A, Burns RJ, Probstfield J, Tsuyuki RT, White M, Rouleau J, Latini R, Maggioni A, Young J, Pogue J (1999) Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 100:1056–1064

    CAS  PubMed  Google Scholar 

  88. McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held P, Michelson EL, Olofsson B, Yusuf S, Pfeffer MA (2003) Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet 362:767–771

    CAS  PubMed  Google Scholar 

  89. Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau JL, Kober L, Maggioni AP, Solomon SD, Swedberg K, Van de Werf F, White H, Leimberger JD, Henis M, Edwards S, Zelenkofske S, Sellers MA, Califf RM (2003) Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 349:1893–1906

    CAS  PubMed  Google Scholar 

  90. Brilla CG, Zhou G, Matsubara L, Weber KT (1994) Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 26:809–820

    CAS  PubMed  Google Scholar 

  91. Brilla CG, Maisch B, Zhou G, Weber KT (1995) Hormonal regulation of cardiac fibroblast function. Eur Heart J 16(Suppl C):45–50

    CAS  PubMed  Google Scholar 

  92. Neumann S, Huse K, Semrau R, Diegeler A, Gebhardt R, Buniatian GH, Scholz GH (2002) Aldosterone and D-glucose stimulate the proliferation of human cardiac myofibroblasts in vitro. Hypertension 39:756–760

    CAS  PubMed  Google Scholar 

  93. Minnaard-Huiban M, Hermans JJ, Essen H, Bitsch N, Smits JF (2008) Comparison of the effects of intrapericardial and intravenous aldosterone infusions on left ventricular fibrosis in rats. Eur J Heart Fail 10:1166–1171

    CAS  PubMed  Google Scholar 

  94. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure Randomized aldactone evaluation study investigators. N Engl J Med 341:709–717

    CAS  PubMed  Google Scholar 

  95. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348:1309–1321

    CAS  PubMed  Google Scholar 

  96. Zannad F, Alla F, Dousset B, Perez A, Pitt B (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102:2700–2706

    CAS  PubMed  Google Scholar 

  97. Singh VP, Baker KM, Kumar R (2008) Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol 294:H1675–H1684

    CAS  PubMed  Google Scholar 

  98. Novartis (2011) Highlights of prescribing information - Tekturna® (aliskiren) Tablets, Oral (http://www.pharma.us.novartis.com/product/pi/pdf/tekturna.pdf). Accessed 9 Mar 2011

  99. Klapholz M (2009) Beta-blocker use for the stages of heart failure. Mayo Clin Proc 84:718–729

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Lefkowitz RJ, Rockman HA, Koch WJ (2000) Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation 101:1634–1637

    CAS  PubMed  Google Scholar 

  101. Post SR, Hammond HK, Insel PA (1999) Beta-adrenergic receptors and receptor signaling in heart failure. Annu Rev Pharmacol Toxicol 39:343–360

    CAS  PubMed  Google Scholar 

  102. de Groote P, Ennezat PV, Mouquet F (2007) Bisoprolol in the treatment of chronic heart failure. Vasc Health Risk Manag 3:431–439

    PubMed Central  PubMed  Google Scholar 

  103. Kveiborg B, Major-Petersen A, Christiansen B, Torp-Pedersen C (2007) Carvedilol in the treatment of chronic heart failure: lessons from the Carvedilol Or Metoprolol European Trial. Vasc Health Risk Manag 3:31–37

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Meszaros JG, Gonzalez AM, Endo-Mochizuki Y, Villegas S, Villarreal F, Brunton LL (2000) Identification of G protein-coupled signaling pathways in cardiac fibroblasts: cross talk between G(q) and G(s). Am J Physiol Cell Physiol 278:C154–C162

    CAS  PubMed  Google Scholar 

  105. Turner NA, Porter KE, Smith WH, White HL, Ball SG, Balmforth AJ (2003) Chronic beta2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. Cardiovasc Res 57:784–792

    CAS  PubMed  Google Scholar 

  106. Ostrom RS, Naugle JE, Hase M, Gregorian C, Swaney JS, Insel PA, Brunton LL, Meszaros JG (2003) Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq-Gs cross-talk regulates collagen production in cardiac fibroblasts. J Biol Chem 278:24461–24468

    CAS  PubMed  Google Scholar 

  107. Shiroshita-Takeshita A, Brundel BJ, Burstein B, Leung TK, Mitamura H, Ogawa S, Nattel S (2007) Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. Cardiovasc Res 74:75–84

    CAS  PubMed  Google Scholar 

  108. Chen J, Mehta JL (2006) Angiotensin II-mediated oxidative stress and procollagen-1 expression in cardiac fibroblasts: blockade by pravastatin and pioglitazone. Am J Physiol Heart Circ Physiol 291:H1738–H1745

    CAS  PubMed  Google Scholar 

  109. He YP, Zhao LY, Zheng QS, Liu SW, Zhao XY, Lu XL, Niu XL, Li X (2008) Involvement of ERK and AKT signaling in the growth effect of arginine vasopressin on adult rat cardiac fibroblast and the modulation by simvastatin. Mol Cell Biochem 317:33–41

    CAS  PubMed  Google Scholar 

  110. Porter KE, Turner NA, O'Regan DJ, Balmforth AJ, Ball SG (2004) Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA. Cardiovasc Res 61:745–755

    CAS  PubMed  Google Scholar 

  111. Martin J, Denver R, Bailey M, Krum H (2005) In vitro inhibitory effects of atorvastatin on cardiac fibroblasts: implications for ventricular remodelling. Clin Exp Pharmacol Physiol 32:697–701

    CAS  PubMed  Google Scholar 

  112. Porter KE, Turner NA (2011) Statins and myocardial remodelling: cell and molecular pathways. Expert Rev Mol Med 13:e22

    PubMed  Google Scholar 

  113. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907

    CAS  PubMed  Google Scholar 

  114. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15:1077–1081

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Tan SM, Zhang Y, Connelly KA, Gilbert RE, Kelly DJ (2010) Targeted inhibition of activin receptor-like kinase 5 signaling attenuates cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 298:H1415–H1425

    CAS  PubMed  Google Scholar 

  116. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984

    CAS  PubMed  Google Scholar 

  117. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105:13027–13032

    PubMed Central  PubMed  Google Scholar 

  118. Peng HJ, Dai DZ, Ji H, Dai Y (2010) The separate roles of endothelin receptors participate in remodeling of matrix metalloproteinase and connexin 43 of cardiac fibroblasts in maladaptive response to isoproterenol. Eur J Pharmacol 634:101–106

    CAS  PubMed  Google Scholar 

  119. Rodriguez-Pascual F, Busnadiego O, Lagares D, Lamas S (2011) Role of endothelin in the cardiovascular system. Pharmacol Res 63:463–472

    CAS  PubMed  Google Scholar 

  120. Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, Dimaio JM, Sadek H, Kuwahara K, Olson EN (2010) Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res 107:294–304

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Kikuchi A, Yamamoto H, Kishida S (2007) Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 19:659–671

    CAS  PubMed  Google Scholar 

  122. Schulte G, Bryja V (2007) The frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci 28:518–525

    CAS  PubMed  Google Scholar 

  123. Cadigan KM, Liu YI (2006) Wnt signaling: complexity at the surface. J Cell Sci 119:395–402

    CAS  PubMed  Google Scholar 

  124. Krasnow RE, Wong LL, Adler PN (1995) Dishevelled is a component of the frizzled signaling pathway in Drosophila. Development 121:4095–4102

    CAS  PubMed  Google Scholar 

  125. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    CAS  PubMed  Google Scholar 

  126. Blankesteijn WM, van de Schans VA, ter Horst P, Smits JF (2008) The Wnt/frizzled/GSK-3 beta pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci 29:175–180

    CAS  PubMed  Google Scholar 

  127. van Gijn ME, Daemen MJ, Smits JF, Blankesteijn WM (2002) The wnt-frizzled cascade in cardiovascular disease. Cardiovasc Res 55:16–24

    PubMed  Google Scholar 

  128. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109

    CAS  PubMed  Google Scholar 

  130. McMahon JA, McMahon AP (1989) Nucleotide sequence, chromosomal localization and developmental expression of the mouse int-1-related gene. Development 107:643–650

    CAS  PubMed  Google Scholar 

  131. van de Schans VA, Smits JF, Blankesteijn WM (2008) The Wnt/frizzled pathway in cardiovascular development and disease: friend or foe? Eur J Pharmacol 585:338–345

    PubMed  Google Scholar 

  132. Barandon L, Casassus F, Leroux L, Moreau C, Allieres C, Lamaziere JM, Dufourcq P, Couffinhal T, Duplaa C (2011) sFRP-1 improves postinfarction scar formation through a modulation of inflammatory response. Arterioscler Thromb Vasc Biol 31:e80–e87

    CAS  PubMed  Google Scholar 

  133. Schumann H, Holtz J, Zerkowski HR, Hatzfeld M (2000) Expression of secreted frizzled related proteins 3 and 4 in human ventricular myocardium correlates with apoptosis related gene expression. Cardiovasc Res 45:720–728

    CAS  PubMed  Google Scholar 

  134. Barandon L, Couffinhal T, Ezan J, Dufourcq P, Costet P, Alzieu P, Leroux L, Moreau C, Dare D, Duplaa C (2003) Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation 108:2282–2289

    CAS  PubMed  Google Scholar 

  135. Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, Yamada C, Liu TC, Huang G, Basson CT, Kispert A, Greenspan DS, Sato TN (2009) Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11:46–55

    CAS  PubMed Central  PubMed  Google Scholar 

  136. He W, Zhang L, Ni A, Zhang Z, Mirotsou M, Mao L, Pratt RE, Dzau VJ (2010) Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci U S A 107:21110–21115

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N, Mu H, Pachori A, Dzau V (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104:1643–1648

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Blankesteijn WM, Essers-Janssen YP, Verluyten MJ, Daemen MJ, Smits JF (1997) A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med 3:541–544

    CAS  PubMed  Google Scholar 

  139. Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I, Hatzopoulos AK (2011) Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 4:469–483

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Laeremans H, Rensen SS, Ottenheijm HC, Smits JF, Blankesteijn WM (2010) Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts. Cardiovasc Res 87:514–523

    CAS  PubMed  Google Scholar 

  141. Laeremans H, Hackeng TM, van Zandvoort MA, Thijssen VL, Janssen BJ, Ottenheijm HC, Smits JF, Blankesteijn WM (2011) Blocking of Frizzled signaling with a homologous peptide fragment of Wnt3a/Wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation 124:1626–1635

    CAS  PubMed  Google Scholar 

  142. Chen L, Wu Q, Guo F, Xia B, Zuo J (2004) Expression of Dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migration. J Cell Mol Med 8:257–264

    CAS  PubMed  Google Scholar 

  143. Malekar P, Hagenmueller M, Anyanwu A, Buss S, Streit MR, Weiss CS, Wolf D, Riffel J, Bauer A, Katus HA, Hardt SE (2010) Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension 55:939–945

    CAS  PubMed  Google Scholar 

  144. Vilahur G, Juan-Babot O, Pena E, Onate B, Casani L, Badimon L (2011) Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J Mol Cell Cardiol 50:522–533

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support for this research line by the Department of Economic Affairs of The Netherlands (BSIK grant 03033) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Daskalopoulos, E.P., Janssen, B.J.A., Blankesteijn, W.M. (2013). Targeting Wnt Signaling to Improve Wound Healing After Myocardial Infarction. In: Gourdie, R., Myers, T. (eds) Wound Regeneration and Repair. Methods in Molecular Biology, vol 1037. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-505-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-505-7_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-504-0

  • Online ISBN: 978-1-62703-505-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics