Skip to main content

Peptide Interaction with and Insertion into Membranes

  • Protocol
  • First Online:
Membrane Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1033))

Abstract

Natural and synthetic membrane active peptides as well as fragments from membrane proteins interact with membranes. In several cases, such interactions cause the insertion of the peptides to the membrane and their assembly within the lipid bilayer. Here we present spectroscopic approaches utilizing NBD and rhodamine fluorescently labeled peptides to measure peptide–membrane interaction and peptide–peptide interaction within the membrane. The usage of the physical properties of NBD and rhodamine in solution and in membranes provides useful information on the interplay between peptides and lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  PubMed  CAS  Google Scholar 

  2. Papo N, Shai Y (2003) Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 42:458–466

    Article  PubMed  CAS  Google Scholar 

  3. Oren Z, Hong J, Shai Y (1999) A comparative study on the structure and function of a cytolytic alpha-helical peptide and its antimicrobial beta-sheet diastereomer. Eur J Biochem 259:360–369

    Article  PubMed  CAS  Google Scholar 

  4. Merklinger E, Gofman Y, Kedrov A, Driessen AJ, Ben-Tal N, Shai Y, Rapaport D (2012) Membrane integration of a mitochondrial signal-anchored protein does not require additional proteinaceous factors. Biochem J 442:381–389

    Article  PubMed  CAS  Google Scholar 

  5. Freire E (1995) Differential scanning calorimetry. Methods Mol Biol 40:191–218

    PubMed  CAS  Google Scholar 

  6. Epand RM, Rotem S, Mor A, Berno B, Epand RF (2008) Bacterial membranes as predictors of antimicrobial potency. J Am Chem Soc 130:14346–14352

    Article  PubMed  CAS  Google Scholar 

  7. Oren Z, Ramesh J, Avrahami D, Suryaprakash N, Shai Y, Jelinek R (2002) Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. Eur J Biochem 269:3869–3880

    Article  PubMed  CAS  Google Scholar 

  8. Grieco P, Carotenuto A, Auriemma L, Saviello MR, Campiglia P, Gomez-Monterrey IM, Marcellini L, Luca V, Barra D, Novellino E, Mangoni ML (2012) The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: identification of a potent anti-Candida peptide. Biochim Biophys Acta 1828(2):652–660

    PubMed  Google Scholar 

  9. Mansson R, Bysell H, Hansson P, Schmidtchen A, Malmsten M (2011) Effects of peptide secondary structure on the interaction with oppositely charged microgels. Biomacromolecules 12:419–424

    Article  PubMed  CAS  Google Scholar 

  10. Gable JE, Schlamadinger DE, Cogen AL, Gallo RL, Kim JE (2009) Fluorescence and UV resonance Raman study of peptide-vesicle interactions of human cathelicidin LL-37 and its F6W and F17W mutants. Biochemistry 48:11264–11272

    Article  PubMed  CAS  Google Scholar 

  11. Chattopadhyay A, London E (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26:39–45

    Article  PubMed  CAS  Google Scholar 

  12. Rapaport D, Shai Y (1992) Aggregation and organization of pardaxin in phospholipid membranes. A fluorescence energy transfer study. J Biol Chem 267:6502–6509

    PubMed  CAS  Google Scholar 

  13. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31:12416–12423

    Article  PubMed  CAS  Google Scholar 

  14. Gazit E, Lee WJ, Brey PT, Shai Y (1994) Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry 33:10681–10692

    Article  PubMed  CAS  Google Scholar 

  15. Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(Pt 3):501–513

    Article  PubMed  CAS  Google Scholar 

  16. Hetru C, Letellier L, Oren Z, Hoffmann JA, Shai Y (2000) Androctonin, a hydrophilic disulphide-bridged non-haemolytic anti-microbial peptide: a plausible mode of action. Biochem J 345(Pt 3):653–664

    Article  PubMed  CAS  Google Scholar 

  17. Merrifield RB, Vizioli LD, Boman HG (1982) Synthesis of the antibacterial peptide cecropin A (1–33). Biochemistry 21:5020–5031

    Article  PubMed  CAS  Google Scholar 

  18. Avrahami D, Oren Z, Shai Y (2001) Effect of multiple aliphatic amino acids substitutions on the structure, function, and mode of action of diastereomeric membrane active peptides. Biochemistry 40:12591–12603

    Article  PubMed  CAS  Google Scholar 

  19. Reuven EM, Dadon Y, Viard M, Manukovsky N, Blumenthal R, Shai Y (2012) HIV-1 gp41 transmembrane domain interacts with the fusion peptide: implication in lipid mixing and inhibition of virus-cell fusion. Biochemistry 51:2867–2878

    Article  PubMed  CAS  Google Scholar 

  20. Cohen T, Cohen SJ, Antonovsky N, Cohen IR, Shai Y (2010) HIV-1 gp41 and TCRalpha trans-membrane domains share a motif exploited by the HIV virus to modulate T-cell proliferation. PLoS Pathog 6:e1001085

    Article  PubMed  Google Scholar 

  21. Cohen T, Pevsner-Fischer M, Cohen N, Cohen IR, Shai Y (2008) Characterization of the interacting domain of the HIV-1 fusion peptide with the transmembrane domain of the T-cell receptor. Biochemistry 47:4826–4833

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation, German-Israel Foundation (GIF), Israel Ministry of Health, Benoziyo Center for Neurological Diseases, and European Community Grant No. 278998. Yechiel Shai is the incumbent of the Harold S. and Harriet B. Brady Professorial Chair in Cancer Research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Saar-Dover, R., Ashkenazi, A., Shai, Y. (2013). Peptide Interaction with and Insertion into Membranes. In: Rapaport, D., Herrmann, J. (eds) Membrane Biogenesis. Methods in Molecular Biology, vol 1033. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-487-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-487-6_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-486-9

  • Online ISBN: 978-1-62703-487-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics