Skip to main content

The Use of Cardiolipin-Containing Liposomes as a Model System to Study the Interaction Between Proteins and the Inner Mitochondrial Membrane

  • Protocol
  • First Online:
Membrane Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1033))

Abstract

The interaction of proteins with biological membranes is a key factor in their biogenesis and proper function. Hence, unraveling the properties of this interaction is very important and constitutes an essential step in deciphering the structural and functional characteristics of a membrane protein. Here we describe the use of cardiolipin-containing liposomes to analyze the interaction of the import protein Tim44 with the inner mitochondrial membrane. Using this system we showed that Tim44 is peripherally attached to the membrane and we detected the membrane binding site of the protein. The cardiolipin-containing liposomes serve as an excellent in vitro model system to the inner mitochondrial membrane and thus provide a good tool to analyze the interaction of various mitochondrial proteins with the inner membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  PubMed  CAS  Google Scholar 

  2. Marsden HR, Tomatsu I, Kros A (2011) Model systems for membrane fusion. Chem Soc Rev 40:1572–1585

    Article  PubMed  CAS  Google Scholar 

  3. Wesolowska O, Michalak K, Maniewska J et al (2009) Giant unilamellar vesicles—a perfect tool to visualize phase separation and lipid rafts in model systems. Acta Biochim Pol 56:33–39

    PubMed  Google Scholar 

  4. Sanchez SA, Tricerri MA, Ossato G et al (2010) Lipid packing determines protein-membrane interactions: challenges for apolipoprotein A-I and high density lipoproteins. Biochim Biophys Acta 1798:1399–1408

    Article  PubMed  CAS  Google Scholar 

  5. Walde P, Cosentino K, Engel H et al (2010) Giant vesicles: preparations and applications. Chembiochem 11:848–865

    Article  PubMed  CAS  Google Scholar 

  6. Osman C, Voelker DR, Langer T (2011) Making heads or tails of phospholipids in mitochondria. J Cell Biol 192:7–16

    Article  PubMed  CAS  Google Scholar 

  7. Horst M, Jeno P, Kronidou NG et al (1993) Protein import into yeast mitochondria: the inner membrane import site protein ISP45 is the MPI1 gene product. EMBO J 12:3035–3041

    PubMed  CAS  Google Scholar 

  8. Blom J, Kubrich M, Rassow J et al (1993) The essential yeast protein MIM44 (encoded by MPI1) is involved in an early step of preprotein translocation across the mitochondrial inner membrane. Mol Cell Biol 13:7364–7371

    PubMed  CAS  Google Scholar 

  9. Schneider HC, Berthold J, Bauer MF et al (1994) Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371:768–774

    Article  PubMed  CAS  Google Scholar 

  10. Marom M, Safonov R, Amram S et al (2009) Interaction of the Tim44 C-terminal domain with negatively charged phospholipids. Biochemistry 48:11185–11195

    Article  PubMed  CAS  Google Scholar 

  11. Cui W, Josyula R, Li J et al (2011) Membrane binding mechanism of yeast mitochondrial peripheral membrane protein TIM44. Protein Pept Lett 18:718–725

    Article  PubMed  CAS  Google Scholar 

  12. Weiss C, Oppliger W, Vergeres G et al (1999) Domain structure and lipid interaction of recombinant yeast Tim44. Proc Natl Acad Sci USA 96:8890–8894

    Article  PubMed  CAS  Google Scholar 

  13. Claypool SM (2009) Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Biochim Biophys Acta 1788:2059–2068

    Article  PubMed  CAS  Google Scholar 

  14. Schlattner U, Tokarska-Schlattner M, Ramirez S et al (2009) Mitochondrial kinases and their molecular interaction with cardiolipin. Biochim Biophys Acta 1788:2032–2047

    Article  PubMed  CAS  Google Scholar 

  15. Ott M, Zhivotovsky B, Orrenius S (2007) Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 14:1243–1247

    Article  PubMed  CAS  Google Scholar 

  16. Vergeres G, Manenti S, Weber T et al (1995) The myristoyl moiety of myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein is embedded in the membrane. J Biol Chem 270:19879–19887

    Article  PubMed  CAS  Google Scholar 

  17. Buser CA, Sigal CT, Resh MD et al (1994) Membrane binding of myristylated peptides corresponding to the NH2 terminus of Src. Biochemistry 33:13093–13101

    Article  PubMed  CAS  Google Scholar 

  18. Slutsky-Leiderman O, Marom M, Iosefson O et al (2007) The interplay between components of the mitochondrial protein translocation motor studied using purified components. J Biol Chem 282:33935–33942

    Article  PubMed  CAS  Google Scholar 

  19. Charles J, Stewart M (1979) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14

    Google Scholar 

Download references

Acknowledgment

This work was supported by the German-Israeli Foundation for Scientific Research and Development (GIF-1012/08) and Israel Science Foundation (452/09).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marom, M., Azem, A. (2013). The Use of Cardiolipin-Containing Liposomes as a Model System to Study the Interaction Between Proteins and the Inner Mitochondrial Membrane. In: Rapaport, D., Herrmann, J. (eds) Membrane Biogenesis. Methods in Molecular Biology, vol 1033. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-487-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-487-6_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-486-9

  • Online ISBN: 978-1-62703-487-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics